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Abstract

Motivation: Gene annotation is the final goal of gene
prediction algorithms. However, these algorithms frequently
make mistakes and therefore the use of gene predictions for
sequence annotation is hardly possible. As a result, biologists
are forced to conduct time-consuming gene identification
experiments by designing appropriate PCR primers to test
c¢DNA libraries or applying RT-PCR, exon trapping/ampli-
fication, or other techniques. This process frequently amounts
to ‘guessing’ PCR primers on top of unreliable gene
predictions and frequently leads to wasting of experimental
efforts.

Results: The present paper proposes a simple and reliable
algorithm for experimental gene identification which by-
passes the unreliable gene prediction step. Studies of the
performance of the algorithm on a sample of human genes
indicate that an experimental protocol based on the algo-
rithm’s predictions achieves an accurate gene identification
with relatively few PCR primers. Predictions of PCR primers
may be used for exon amplification in preliminary mutation
analysis during an attempt to identify a gene responsible for
a disease. We propose a simple approach to find a short
region from a genomic sequence that with high probability
overlaps with some exon of the gene. The algorithm is
enhanced to find one or more segments that are probably
contained in the translated region of the gene and can be
used as PCR primers to select appropriate clones in cDNA
libraries by selective amplification. The algorithm is further
extended to locate a set of PCR primers that uniformly cover
all translated regions and can be used for RT-PCR and
further sequencing of (unknown) mRNA.

"To whom correspondence should be addressed

Availability: The programs are implemented as Web servers
(GenePrimer and CASSANDRA) and can be reached at
http:/fwww-hto.usc.edu/software/procrustes/

Contact: ssze@hto.usc.edu

Introduction

In the absence of accurate gene prediction programs, gene
identification and exon annotation in genomic DNA usually
amount to sequencing the corresponding mRNA. This
mRNA can be found by direct screening of cDNA libraries,
Northern blot analysis or hybrid selection of cDNA. The li-
miting factor in these techniques is non-specific hybridiza-
tion (Hattier et al., 1995; Timmermans et al., 1996). The
problem of non-specific hybridization is usually addressed
by pre-hybridization to repeats and restricting the analysis to
genomic DNA fragments already suspected to contain po-
tential exons found by zoo blotting, CpG island selection,
exon trapping, exon amplification, etc. (for areview, see Par-
rish and Nelson, 1993; Parimoo et al., 1995). Comparisons
of different techniques for the identification of transcribed
sequences in the particular case of chromosome 17 BRCAI
region containing more than 26 genes were carried out in
Hattier et al. (1995) and Brody et al. (1995).

A serious limitation of these techniques is the low signal-
to-noise ratio in hybridization experiments and high false-
positive rate of splicing-based exon amplification methods
(Church et al., 1993; North et al., 1993). Furthermore, some
of the techniques cannot be applied to intronless or single-in-
tron genes (Parimoo et al., 1995). For example, these tech-
niques failed during analysis of the FMR2 gene in the
FRAXE fragile site on the X chromosome associated with
mild mental retardation (Gu et al., 1996) and the RPGR gene
mutated in X-linked retinitis pigmentosa (Meindl et al.,
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1996). In addition, many of these methods are very labor
intensive (Parrish and Nelson, 1993; Selleri et al., 1995).

An alternative strategy is in silico gene prediction. How-
ever, no existing gene recognition algorithm provides accu-
racy sufficient for gene identification and exon annotation.
The accuracy of gene predictions drastically depends on the
availability of a related protein. If a related mammalian pro-
tein of an analyzed human gene is known, the accuracy of
gene predictions in this fragment is as high as 97-99%, and
itis 95, 93 and 91% for related plant, fungal and prokaryotic
proteins, respectively (Gelfand ez al., 1996a; Mironov et al.,
1998; Sze and Pevzner, 1997). On the contrary, recognition
of genes having no relatives in sequence databases is diffi-
cult, and the accuracy falls significantly for genes with many
exons or with unusual codon usage (Burset and Guigd,
1996).

Although insufficient for final annotation, such predictions
are used in practice to decrease the noise and to limit the ex-
perimental analysis to promising regions. In addition to the
above examples, this approach was used, in particular, to se-
lect cDNAs of the gene for X-linked Kallmann syndrome
(Legouis et al., 1991), the gene for DiGeorge syndrome (Bu-
darf et al., 1995; Goldmuntz et al., 1996), Caenorhabditis
elegans muscle-specific gene unc-89 (Benian et al., 1996),
as well as analysis of alternative splicing in the Drosophila
gene zipper encoding non-muscle myosin II heavy chain
(Mansfield et al., 1996). Computer predictions were also
used to perform single-strand conformation polymorphism
mutation analysis in X-linked myotubular myopathy (La-
porte et al., 1996). Thus, the use of computer predictions in
experimental practice is limited to the construction of oligo-
nucleotide probes for Southern and Northern analyses, and
the construction of PCR primers for clone detection in cDNA
libraries or RT-PCR. Since the reliability of a predicted gene
is not known, PCR primers for experimental gene identifica-
tion are either selected at random, or guessed on top of unreli-
able exon predictions. This procedure often leads to wasting
of experimental efforts.

This paper describes a different approach to this problem.
Instead of trying to develop a universal gene prediction pro-
cedure, we use simple combinatorial techniques to make pre-
dictions needed in particular experimental schemes. We ana-
lyze open reading frames to find regions including long po-
tential exons, thus reducing the noise level in hybridization
experiments (zoo blotting, Southern and Northern analyses).
The results of this step can be used for hybridization-based
analyses and preliminary mutation analysis if a disease gene
is studied. They also serve as the base for further processing.

If the cDNA libraries contain a clone corresponding to the
analyzed gene, it can be identified more effectively not by
hybridization, but by PCR selection. To do that, a biologist
needs a set of candidate PCR primers guaranteed to contain
a given number of primers to translated regions. Such a set

is found by analyzing the coding potential of open reading
frames or chains of candidate exons.

The most complicated experiments are necessary to se-
quence tissue-specific or low-copy mRNAs not represented
in cDNA libraries. Such mRNAs are identified and amplified
simultaneously by RT-PCR. We introduce the primer cover
problem which models the primer selection in this case and
attempts to find a small set of primers uniformly covering the
(unknown) mRNA corresponding to the (known) genomic
sequence. In contrast to conventional gene recognition algo-
rithms, the primer cover algorithm helps a biologist to ident-
ify a gene experimentally without attempting to predict all
exons explicitly.

Data

The algorithms were tested on a set of 257 human genomic
fragments containing non-homologous complete genes (Mi-
ronov et al., 1998), and on a set of 133 single-gene Arabidop-
sis thaliana DNA fragments from Korning et al. (1996).

Maximal open reading frames

A genomic sequence can be read in three frames (in each
direction). An open reading frame is a region of a genomic
sequence with no stop codon in frame. For each frame, stop
codons partition a genomic sequence into non-overlapping
regions called maximal open reading frames (MORFs). Each
translated exon in a genomic sequence is contained inside a
MOREF. Although not every MORF contains an exon, the
longest MORF contains an exon in 72% of cases in our
human sample.

Since a random sequence in a given frame contains a stop
codon approximately every 60 nucleotides, ‘random’
MOREFs are relatively short. A typical genomic sequence
contains a large number of short MORFs which are unlikely
to contain exons. Our algorithm discards short MORFs
(<150 nucleotides) and tries to find reliable PCR primers in-
side long MORFs. Although some short exons are lost after
this procedure, it does not create serious problems since such
exons can be recovered by PCR experiments with primers
from long MORFs.

Coding windows

Given a long MOREF, we would like to find a short region
within this MOREF that is likely to overlap with an exon. This
region may be used later for PCR primer selection. A number
of measures (coding potentials; reviewed in Fickett and
Tung, 1992; Gelfand, 1995) correlate with the likelihood of
the region being coding. We use the simplest definition of
coding potential requiring only information about codon
usage. Let flabc) be the frequency of the codon abc in the
learning sample. The coding potential of a fragment consist-
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Fig. 1. Percentage of human genes when the top n windows (150
nucleotides) are sufficient to get a window that overlaps an exon.

ing of n codons is S(aibicy ... aybycy) z log flabc). We
=1

select a window with the highest coding potential within a
MORF and assume that this window overlaps an exon. Alter-
natively, a window with the largest difference between the
coding potential in one frame and the maximum coding po-
tential in the other two frames (difference criteria) can be
selected. Computational experiments indicated that the dif-
ference criteria give slightly better results.

An algorithm for finding windows that are likely to overlap
an exon is as follows. Given a genomic sequence, generate
all long MORFs (150 nucleotides). For each such MOREF,
find the best window (of length 150 nucleotides) with respect
to the difference criteria. Return the windows in decreasing
order of their difference values. Figure 1 shows the percen-
tage of human DNA fragments when the top n windows are
sufficient to get a window that overlaps an exon. One win-
dow was sufficient in 90% of cases, whereas four windows
were sufficient in all cases with one exception. The exception
is the retinoblastoma gene (of 180 kb) which required 21
windows.

PCR primers

Since coding windows are likely to overlap with exons, we
select the central 20-nucleotide region of a coding window as
candidate PCR primers likely to be inside an exon. Figure 2
shows the percentages of human genes when the top n primers
are sufficient to have primers inside k exons. There was only
one case when all exons were missed by this procedure. In this
case, all exons are shorter than 100 nucleotides.

In particular, for k = 1, the first primer was contained in an
exon in 86% of cases and one of the top five primers was
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Fig. 2. Percentages of human genes (with at least k exons) when the
top n primers (20 nucleotides) are sufficient to have primers inside
k exons.

contained in an exon in 96% of cases. With k increasing,
many more primers are needed to detect more exons and the
above approach does not always find primers inside all
exons, leading to exon misses. No exons were missed in 37%
of cases, one exon was missed in 28% of cases, while two
exons were missed in 16% of cases. In 91% of cases, no more
than three exons were missed. In 99% of cases, less than
eight exons were missed. There are two exceptional cases
with 14 and 38 exons missing (collagen and retinoblastoma,
respectively). A large number of missing exons is an indica-
tion of the complexity of the gene recognition problem (gene
recognition programs frequently miss exons). This problem
is overcome by designing a primer cover of genomic se-
quences which can be used for experimental gene identifica-
tion.

Primer cover

Let P be a set of primers in a genomic sequence. Some of
these primers may be contained in the corresponding mRNA
(valid primers), while others may not. For a valid primer p,
define left(p) as the valid primer preceding p in the cDNA or
(if p is the leftmost valid primer) as a fictitious primer corre-
sponding to the beginning of the cDNA. Similarly, define
right(p) as the valid primer following p in the cDNA or (if p
is the rightmost valid primer) as a fictitious primer corre-
sponding to the end of the cDNA. Given a threshold r indi-
cating the maximum length of potential PCR products, a set
of primers P is a cover of a genomic sequence if for every
valid primer from P, the distances from lef#(p) to p and from
p to right(p) are less than r. Intuitively, in this formulation,
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Fig. 3. Percentages of human genes when n primers (20 nucleotides)
are sufficient to have a primer cover or a primer pair separated by at
most 7 = 500 nucleotides (in addition to the two fictitious primers at
the start and at the end of the cDNA).

primers are undirected fragments that can be used to con-
struct a set of primers for PCR amplification, each undirected
fragment corresponding to two PCR primers, one in each
direction. Given a genomic sequence, the goal is to find a
primer cover of minimal size. In reality, some adjustments in
the positions of primers are necessary to avoid PCR artifacts.

We implemented a simple algorithm to find a primer cover.
For each MORE, a set of primers is constructed as follows.
Find a primer p in the middle of the best window as before.
To the left of p and to the right of p, add primers every r/2
nucleotides as long as the primers are inside the correspon-
ding MOREF and there are no primers already put within r
nucleotides. We position primers every r/2 nucleotides to en-
sure that when primers are found inside all exons, the result-
ing set of primers is guaranteed to form a primer cover. Con-
sider MORFs in sorted order as before, return primers in a
MOREF in increasing order of the distance from p.

Figure 3 shows the percentages of human genes when n
primers are sufficient to have a primer cover for r = 500 (in
addition to the two fictitious primers at the start and at the end
of the cDNA). There are only two exceptional cases when the
algorithm fails to construct a primer cover. When the algo-
rithm constructs a primer cover successfully, only one primer
was needed in 37% of cases. At most eight primers were
needed to cover 80% of cases, while at most 14 primers were
needed to cover 90% of cases.

To find a clone corresponding to the analyzed gene in a
cDNA library, biologists often use experimental protocols
based on PCR amplification. In this situation, they need a
relatively small set of PCR primers containing at least two

primers to the cDNA in question. In other words, we are in-
terested in the number of primers needed to get the first ad-
jacent pair of primers separated by at most r nucleotides
(primer pair problem). If a set of primers contains such a pair,
then the PCR product corresponding to the primers from the
pair leads to the identification of the corresponding part of
the gene. There is only one case when the approach fails to
find such an adjacent pair (Figure 3). Otherwise, only one
primer (in addition to the two fictitious primers at the start
and at the end of the cDNA) was needed to have a primer pair
in 75% of cases, at most three primers were needed in 90%
of cases and at most 16 primers were needed in 99% of cases.

Alternative approach for finding single probes and
primer pairs

Below we describe a different approach specifically for find-
ing single probes and primer pairs based on exon chains. Let
S be a set of suboptimal exons or exon chains, and let each
chain p € Sbe ascribed a statistical weight R(p) [here we used
3-exon chains weighed by the function from Gelfand et al.
(1996b) measuring coding potential and splice site
strengths]. For each position b, let S(b) be the subset of chains
coming through b. The score of a candidate primer corre-
sponding to positions by ... by is defined as:

.
W(b,..b,) = %Z > (1)

i=1 pes(b,)

where C is a constant. The candidate primers are sorted by
decreasing order of their scores and a fixed number of
highest scoring primers are retained with the additional re-
quirement that the distance between the primers exceeds
some given threshold.

The algorithm was tested on samples of human and Arabi-
dopsis genes (Tables 1 and 2, respectively). We predicted
single probes of length 150 nucleotides (a probe was ac-
cepted if at least 100 nucleotides could hybridize with the
coding region of cDNA), and pairs of primers of length 30
nucleotides.

On the first sample, the highest scoring candidate probe
was coding in 92% of cases and a set of five candidate probes
almost always contained a coding one. It was possible to con-
struct a primer pair in all but two cases (99%). The two ex-
ceptions are genes with one or two short exons. Two candi-
dates were sufficient in 81% of cases and three candidates
were sufficient in 89% of cases.

On the second sample, the highest scoring candidate probe
was coding in 97% of cases, and three probes were sufficient
in all cases. A primer pair was constructed in all but one case
and it always contained no more than four candidates (two
candidates in 93% of cases, three candidates in 98% of
cases).
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Table 1. Number of genes in each category from predictions of 257 human genes

Type of prediction Candidates needed

1 2 3 4 5 6-10 >10 No prediction
Single probe 237 11 4 1 1 3 0 0
Primer pair - 209 19 9 2 12 4 2

Table 2. Number of genes in each category from predictions of 133 Arabidopsis genes

Type of prediction Candidates needed

1 2 4 No prediction
Single probe 129 3 0 0
Primer pair - 124 2 1
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Fig. 4. Output of GenePrimer software for human gene 133842.
Rectangles denote MORFs in different frames. Primers within
MORFs are shown in ‘successive’ colors in the order of their
priorities with each color showing three primers (the first color is
red). The real gene structure is also shown with each exon in its
respective frame.

Discussion

The above algorithms provide computational support for
gene identification experiments. We have tested the algo-
rithms on two samples of human and plant genes, and dem-
onstrated that the reliability of predictions is extremely high.
The programs are implemented as Web servers (GenePrimer
for the primer cover problem; CASSANDRA for the alterna-
tive approach for finding single probes and primer pairs) and
can be reached at http://www-hto.usc.edu/software/pro-
crustes/. Figures 4 and 5 show sample graphical outputs of
the two programs.

Of course, biological experiments are rather diverse, and
the proposed algorithms do not cover all experimental ap-
proaches to gene identification. An appealing feature of the
approach is its simplicity and combinatorial flexibility, mak-
ing it easy to modify or optimize the program for different
experimental schemes.

The algorithms described are based on two types of analy-
ses: (1) information about long open reading frames and (ii)
information about the intersection of predicted exons.
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Fig. 5. Output of CASSANDRA software for human gene 133842.
The predicted segments are shown as arrows pointing to their
positions on the sequence line. The number above each arrow is the
exon position in the candidate list. The height of an arrow’s solid part
is proportional to the candidate score, so that the arrow for the most
probable segment is the longest one. The color of an arrow indicates
self-hybridization (red) or cross-hybridization to some other seg-
ment (yellow). Green lines correspond to segments for which the
program does not expect any hybridization artifacts.

Further developments can be based on merging these data in
the following way. First, anchor primers are generated either
at the middle of the window with the highest coding poten-
tial, or as the points where most highest scoring exons (or
exon chains) intersect. Then the set of anchor primers is
modified to generate a primer cover (by taking all primers
within MORFs conforming to PCR requirements), a primer
pair (by considering only highest scoring anchor primers), or
whatever set of primers is needed.
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