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ABSTRACT Alignment of protein sequences is
a key step in most computational methods for predic-
tion of protein function and homology-based model-
ing of three-dimensional (3D)-structure. We investi-
gated correspondence between “gold standard”
alignments of 3D protein structures and the se-
quence alignments produced by the Smith–Water-
man algorithm, currently the most sensitive method
for pair-wise alignment of sequences. The results of
this analysis enabled development of a novel method
to align a pair of protein sequences. The comparison
of the Smith–Waterman and structure alignments
focused on their inner structure and especially on
the continuous ungapped alignment segments, “is-
lands” between gaps. Approximately one third of
the islands in the gold standard alignments have
negative or low positive score, and their recognition
is below the sensitivity limit of the Smith–Waterman
algorithm. From the alignment accuracy perspec-
tive, the time spent by the algorithm while working
in these unalignable regions is unnecessary. We
considered features of the standard similarity scor-
ing function responsible for this phenomenon and
suggested an alternative hierarchical algorithm,
which explicitly addresses high scoring regions.
This algorithm is considerably faster than the Smith–
Waterman algorithm, whereas resulting alignments
are in average of the same quality with respect to
the gold standard. This finding shows that the de-
crease of alignment accuracy is not necessarily a
price for the computational efficiency. Proteins 2004;
54:569–582. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Alignment of two protein sequences is an old and
probably the most classic problem in computational biol-
ogy.1–4 Direct alignment of three-dimensional (3D) struc-
tures is now also possible, although in a more limited
number of cases.5–10 Sequence alignment is the core of
numerous applications in sequence analysis (e.g., in func-
tional annotation of genes and proteins,11 in protein
domain analysis,12 and in homology modeling of protein

3D structure).13 Many sophisticated computational meth-
ods in molecular biology (e.g., multiple alignments,14,15

profile analysis,16 and threading17) use a pair-wise se-
quence alignment as a subprocedure.

Ideally, an algorithmically produced alignment of two
protein sequences coincides with their evolutionary align-
ment. The latter alignment can be treated as one reproduc-
ing the result of the evolutionary history of homologous
protein sequences (i.e., the aligned sites of given proteins
are assumed to correspond to the same site of their
common ancestor).18 Although the true evolutionary align-
ment is always unknown, an accurate alignment of 3D
structures can serve as its reasonable approximation
because strong stabilizing selection acts against structural
changes, so that protein structural features remain con-
stant, whereas amino acid sequences diverge.19 Therefore,
alignments based on superposition of 3D structures can
serve as the “gold standard” (GS) for pair-wise sequence
alignments.

The aim of this study was to reveal features of structural
alignments, which can be used to construct more efficient
and/or accurate alignment algorithm than classic Smith–
Waterman (SW) algorithm.2 The alignment method, which
is a result from the study, is presented in Results and
Materials and Methods.

Abbreviations used: 3D, three-dimensional structure; GS, gold stan-
dard alignment of 3D structures; SW, Smith–Waterman alignment of
sequences; HSP, high scoring pair; SDP, sparse dynamic program-
ming; FSSP, fold classification based on structure–structure align-
ment of proteins.
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In the analytical part of the study, we compared align-
ments produced by the well-established SW method with
GS structural alignments (Fig. 1). The set of GS align-
ments consisted of nearly 600 protein domain pairs. The
GS alignments were extracted from multiple 3D structure
alignments of protein domains, given in BAliBase20 (www-
igbmc.u-strasbg.fr/BioInfo/BAliBASE2/). The results of our
analysis have been further verified by using the FSSP

database (www2.ebi.ac.uk/dali/fssp/fssp.html) to elimi-
nate a possible data set-related bias. The average level
of similarity between algorithmic and structural align-
ments are considered below as a measure of accuracy of
a sequence-aligning algorithm.21–23 Accuracy of the
sequence-aligning algorithm is critical for homology-
based modeling of 3D structures and for other applica-
tions.

Fig. 1. Comparison of structural gold standard (GS) and Smith–Waterman (SW) alignments. a–c: Alignments of cardiotoxin (PDB code: 1tgx) versus
erabutoxin B (PDB code: 1era). (a) Structural alignment in 3D space. Aligned regions are colored in red in 1tgx and in blue in 1era, nonaligned regions
are in yellow in 1tgx and in green in 1era. Deviations in C� positions of aligned residues are usually within 3 Å. However, at the ends of aligned regions,
some deviations can be as great as 9 Å. (b) GS alignment of 1tgx and 1era sequences, that is, the sequence alignment induced by the above alignment
of 3D structures. (c) SW sequence alignment. Capital characters in (b) and (c) show the exact matches. The GS alignment has 57 pairs of superimposed
positions, forming four islands. These islands are marked with a, B, C, and D in (a) and with –a–, –B–, –C–, and –D– in (b) (the small letter refers to the
GS island which has no analog in SW alignment); the islands are separated with gaps. The SW alignment has 51 pairs of superimposed positions,
forming two islands (marked with –P– and –Q–). Short lines between the GS and SW alignments connect sites identically superimposed in both
alignments. These 49 sites are shown in bold characters. Accuracy of the SW alignment of 1tgx and 1era, compared to the GS alignment, is 49/57 �
85.9%. Here 57 is the number of superimposed positions in the GS alignment, and 49 of them are equally superimposed in the SW alignment.
Confidence of the SW alignment of 1tgx and 1era, is 49/51 � 96.1%. d–f: Alignments of �-cobratoxin (PDB code: 1ctx) versus toxin FS2 (PDB code:
1tfs). Here the similarity between the proteins, and therefore the similarity between their GS and SW alignments, is much lower than that in previous
example. Notation is analogous to that in panels (a)–(c).
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Following earlier works by other groups,21,22 we define
alignment accuracy as the number I of positions Identi-
cally superimposed in the algorithmic and the GS align-
ment divided by the total number G of positions in the GS
alignment:

Alignment_accuracy � I/G (1)

It is known that alignment accuracy strongly depends on
identity of aligned sequences (defined here as the number
of exact residue matches in GS alignment divided by the
length of the shorter sequence). Figure 2 (analogous to Fig.
3 in Ref. 21) shows this dependence for our data set. One
can see that if sequence identity exceeds 31–40%, Smith–
Waterman alignment is almost precise in the vast majority
of cases. This sequence identity range approximately
agrees with the range where homology can be predicted
with a high degree of confidence from the sequence informa-
tion alone.24–26 If identity of two sequences is �10%, the
SW algorithm is unable to reconstruct the GS alignment
even in its small part. However, in the region of 10–30%
sequence identity, the Smith–Waterman alignments show
a very wide range of accuracy values; sequence pairs with
the same identity level display very different “alignabili-
ties.” This finding suggests that in this “twilight zone”
alignment, accuracy depends on internal properties of GS
alignments to be reconstructed, that is, not only on the

sequence identity of the compared proteins, but presum-
ably on distribution of similar and dissimilar sequence
regions along the GS alignment. The analysis of internal
structure of GS alignments is essential for understanding
of the underlying evolutionary process and for the develop-
ment of new alignment methodologies. Properties of GS
alignments were previously out of the focus of studies
aiming at development of novel sequence comparison
techniques. Thus, we investigate the internal structure of
both structural and Smith–Waterman alignments, statis-
tical properties of their ungapped segments (“islands”
between two gaps) and high and low scoring fragments of
these islands. (Note that the metaphor island was used
differently in Altschul et al., Nucl. Acid Res. 2001;29:351–
361, namely, to describe some 2D areas in the alignment
graph.)

The algorithm based on the results of this investigation
explicitly identifies regions of sufficiently high similarity
(anchors), finds the optimal pathway through these an-
chors, and then specifies alignment in the regions between
the anchors. The idea to start the alignment procedure
from the search for high-similarity ungapped regions is
definitely not new and was implemented in several soft-
ware tools (e.g., BLAST [http://www.ncbi.nlm.nih.gov/
BLAST/], FASTA [http://fasta.bioch.virginia.edu/fasta/]).
However, this idea was considered as a way to increase

Fig. 2. Accuracy of 583 pair-wise SW alignments with respect to the structural GS. Each point of the scatter plot corresponds to one pair of proteins.
X-axis (%ID) shows the identity of aligned sequences, computed as the number of identical residue matches in the GS alignment, divided by the length of
the shorter sequence. Y-axis (Accuracy) shows the accuracy of the SW alignment defined by Eq. 1. All SW calculations in this and other figures and
tables have been performed by using Gonnet25029 substitution matrix. The scatter plot presents the results obtained for gap penalties in linear domain
(10, 0.5). Log domain penalties give qualitatively similar plot (see Materials and Methods).
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computational speed of alignment techniques inevitably
associated with the loss of alignment accuracy. Our obser-
vations suggest the way to improve computational speed
without sacrificing alignment accuracy and confidence
compared to the SW algorithm.

MATERIALS AND METHODS

GS alignments were obtained from the BAliBase (Re-
lease 2) database20 of multiple alignments. Only 3D struc-
ture-based alignments of homologous proteins were consid-
ered. This resulted in the data set of 583 pair-wise
sequence alignments.

Smith–Waterman alignments were produced by the
standard routine (C code was obtained from [http://
fasta.bioch.virginia.edu/pub/fasta/], compiled for a Win-
dows NT PC).

The following parameters were found to give the most
accurate alignment (i.e., the highest average coverage
accuracy): substitution matrix Gonnet250 (this is in agree-
ment with Refs. 21 and 25), although the difference with
the results obtained with BLOSUM62 and several other
matrices is relatively small). Two sets of gap opening and
extension penalties are used. The values of 10 (opening)

and 0.5 (extension) penalties were found to give the
highest alignment accuracy. This is in good agreement
with Refs. 21 and 42. However, it is important to note that
these gap penalty values correspond to the linear do-
main27; therefore, they are not applicable for domain
identification in multidomain proteins and for database
homology searches. To ensure this does not affect the
results of the presented study, we have recomputed all
alignments with the logarithmic27 domain penalties 15
(opening) and 1 (extension) used in database searches. In
Figures 3(a), (b) and 6 (see Results and Discussion) we
present results corresponding to both linear and logarith-
mic domain alignments.

The program implementation of the newly developed
algorithm (see Results and Appendix) available at “ftp://
genetics.bwh.harvard.edu/Sunyaev/saadi/” or by request
from the authors.

RESULTS

In the first part of this section, we present results of the
comparative analysis of GS and SW alignments. In the
second part, we describe and test a novel alignment
algorithm based on the results of the analysis.

Fig. 3. Correspondence between GS and SW alignments for protein pairs of different sequence identity. The two gap parameter settings (see
Materials and Methods) have been used for the SW alignments. a: Linear domain setting: gap opening penalty 10, gap extension penalty 0.5. b: Log
domain setting: gap opening 15, gap extension 1. Columns represent four total characteristics of the aligned protein pairs. Black column: maximal
possible number of aligned positions, that is, total sum of L � min(L1,L2), where L1 and L2 are the lengths of individual sequences. Dark-gray column:
number of aligned positions in the GS alignments. Light-gray column: number of aligned positions in the SW alignments. Wight column: number of
positions, identically aligned in the GS and SW alignments. The data are given separately for three different ranges of sequence identity (�10%,
between 10 and 30%, �30%).
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Analysis of the GS and SW Alignments

The scatter plot presented in Figure 2 poses the follow-
ing questions.

1. What part of the typical algorithmic alignment is
correct (i.e., is the typical sequence alignment much
longer than its correct fraction)?

2. How are correctly aligned positions distributed along
the alignment?

3. Are there some confident parts of the alignment even if
it is mostly wrong?

It is obvious (e.g., cf. Sauder et al.28) that the answer to
the first question strongly depends on the choice of gap
penalties, especially on the choice between linear and
logarithmic gap penalty domain27 [Figs. 3(a) and (b)]. The
increase in gap penalties slightly reduces the total length
of the correct part of the alignment, substantially reduces
its incorrect part, and thereby strongly increases its
confidence.

Formally, the notion of alignment confidence can be
defined analogously to the notion of accuracy (Eq. 1):

Alignment_confidence � I/A (2)

where I is again the number of residues Identically aligned
in algorithmic and GS alignments and A is the total
number of aligned positions in the Algorithmic alignment.
For example, in Figure1(c) confidence � 49/51 � 96.1%. In
terms of Sauder et al.,28 alignment_identity corresponds to
the fD measure of alignment quality, and alignment_confi-
dence corresponds to the fM measure.

To answer questions 2 and 3, we have to investigate the
inner structure of structural and algorithmic alignments.
It is natural to study the distribution of correctly aligned
positions with respect to ungapped segments of GS and

SW alignments. Any sequence alignment can be presented
as a chain of alternating gaps and ungapped segments of
superimposed (aligned) amino acid residues. The latter
form “islands” between the gaps [see Figs. 1(b) and (c)].
The goal of a sequence alignment algorithm is to single out
and to superimpose the ungapped segments of both se-
quences to achieve the maximal possible score, taking into
account both the substitution scores and the gap penalties.

As seen in Figure 4, a GS island can be either almost
perfectly recognized by the SW algorithm or almost com-
pletely lost, whereas partial recognition of GS islands is
infrequent. Similarly, semicorrect SW islands comprise a
minor part of all SW islands. Further analysis (results are
not shown) suggests that this is essentially true for all
ranges of protein sequence identity. However, the all-or-
nothing situation is not valid for the overall alignment
accuracy and confidence. For example, in linear parameter
set (cf. Fig. 2), there are 69 SW alignments with alignment
accuracy 0% and 249 alignments with accuracy 80% or
higher (229 of them correspond to protein identity � 30%),
whereas 264 alignments have accuracy between 0% and
80%.

The above results show that alignment accuracy for a
given protein pair can be described in terms of “lost”
(having nothing in common with GS alignment) and
“found” (having at least one correctly aligned position)
islands. The accuracy is determined by two factors: proper-
ties of islands in the GS alignment of proteins and by the
scores of possible sequence alignments paths alternative
to the GS islands.29 As usual, we define the total substitu-
tion score (or simply score) of an island as

Score � �s�ai,bi� , (3)

where summation is carried out over alignment positions;
ai and bi form ith pair of aligned amino acids; s(ai,bi) is the

Fig. 4. Number of islands of a given accuracy and confidence. White bars correspond to the alignment accuracy of GS islands, and black bars
correspond to the alignment confidence of algorithmically determined islands. We define the accuracy and the confidence of islands analogously to Eqs.
1 and 2. The accuracy of GS island is defined as the number of residues of the GS island, correctly aligned by the algorithm, and normalized by the length
of the GS island. Confidence of an algorithmically determined island is defined as the number of residues of the island, correctly (as in the GS alignment)
reconstructed by the algorithm, and normalized by the length of the island in the algorithmic alignment. a,b:Linear and logarithmic gap penalty domains,
respectively (see Materials and Methods).
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substitution score for this amino acid pair. If the score of a
GS island is low, it has a poor chance to be restored by the
Smith–Waterman algorithm with given scoring matrix.
The inability of the algorithm to restore such an island can
follow for two reasons. If the gap penalty is relatively high,
it is not advantageous for the algorithm to introduce
separate gap(s) to capture this island [see island “a” in Fig.
1(b)]. If the gap penalty is low, an alternative higher-
scored way of alignment might exist because of purely
statistical reasons [Figs. 1(e) and (f)]. With a given gap
penalty, the first case is typical of the alignment of
sufficiently close homologs. The second case is typical of
the alignment of remote homologs.

Histograms of scores of islands in the structural GS
alignments and in the Smith–Waterman sequence align-
ments are presented in Figure 5(a). They show a surpris-
ingly large number of the GS islands of low and moreover
negative score. In contrast, the algorithmic SW alignments
almost do not contain low scoring islands. Note in Figure
5(b) that the total length and number of weak islands in
the gold standard alignments are large. GS islands scoring
�5 comprise 32% of all islands in the BaliBase database
and cover 20% of all GS alignments. These weak islands
have almost no chance to be restored by any sequence

alignment algorithm based on a given substitution-scoring
matrix.

Table I shows that the lost and found islands are
distinguished mostly by their score rather than by their
length.

The last question posed in the beginning of this section
is answered in Figure 6. Even if the alignment corresponds
to the twilight zone of Figure 2 (pairs in 10–30% sequence
identity range), it is possible to assess the confidence level
to alignment islands, although the levels are slightly
different for different sets of parameters. For the twilight
zone alignments, in linear domain, only 4% of SW islands
with the score � 40 have nothing in common with the GS
alignment; only 15% of them contain less than two thirds
of correctly aligned positions. In logarithmic domain, 9% of
SW islands with a score � 40 have nothing in common with
GS alignment; 25% of them contain less than two thirds of
correctly aligned positions.

Island’s confidence correlates with the overall confi-
dence of the SW alignment (see Table II, data shown for
the linear domain). Four hundred eleven SW alignments
have at least one island with the score exceeding 40. Three
hundred thirty-eight of them have alignment confidence �
60%, and 73 alignments have alignment confidence � 60%.

Fig. 5. a: Number of islands in the GS alignments (white) and in the Smith–Waterman alignments (black), having their scores within a given range. b:
Total lengths of the islands having their scores within a given range. For example, 588 of the GS islands have their scores between 0 and 5, and the total
length of these islands is 6077 amino acids. In contrast, only 22 of SW islands with total length of 232 amino acids have their scores in this range. The SW
alignments are obtained with the linear domain setting (see Materials and Methods). The results for log domain setting are essentially the same. c: The
same as (b) but for different ranges of protein sequence identity separately.
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Among the alignments with the confidence � 60%, all
islands have positive island confidence and only 3% con-
tain less than two thirds of correctly aligned positions. In
contrast, 14% of islands in the alignments with lower
confidence have nothing in common with GS alignment,
and 31% of them contain less than two thirds of correctly
aligned positions.

Figures 4 and 5 show that alignment accuracy is deter-
mined by the total length of lost GS islands. In turn, the
chance for a GS island to be found correctly is determined
almost solely by its score (see Table I).

Kernels of the GS Islands

Generally, low scoring islands can be subdivided into
two classes: islands that lack any region of significantly
positive score (No algorithm using given substitution
matrix is able to detect these islands.) and islands having a
kernel of significantly positive score (compared to the
gap-opening penalty in use). Low scoring islands of both
types are mostly lost by the SW algorithm. However, in
principle, a proper sequence alignment algorithm can
identify the high scoring kernels.

We define a kernel score of an island as a maximal score
of its fragment. For example, the island shown in Figure
7(a) has the kernel score of �11 (cf. with the notion of high
scoring pair30 HSP). The two-dimensional histogram given
in Figure 7(b) presents the numbers of lost and found
islands, depending on their scores and kernel scores. The
data on the islands of significantly high kernel score, but
low total scores are given in bold. A sequence alignment
algorithm that addresses the kernels explicitly can, in
principle, reveal kernels of these islands. This suggests
that focusing on kernel regions only does not lead to the
loss of the algorithm accuracy and even might increase it.
At the same time, ungapped regions of a score larger than
typically used gap opening penalty comprise a negligible
part of the Needlman–Wunsch matrix.1 Therefore, an
algorithm that does not scan the complete matrix can
significantly increase the computation speed.

Algorithm and Test Results

The above observation leads to the following algorithm
schematically presented in Figure 8 (more detailed descrip-
tion of the algorithm is given in the Appendix):

1. Generate a set of ungapped high scoring segments
(e.g., all HSPs4 with the score above specific threshold T �
0. At later steps of the algorithm, these segments will be
used as “anchors” of the alignment procedure. Finally,
some of these anchors will form island kernels of the
alignment to be produced.

2. Find the optimal alignment path through the set of
anchors (all elements of the Needlman–Wunsch matrix
besides the anchors are set to zeros). The scoring function
to be optimized differs from the traditional one in two
aspects. First, it scores substitutions in anchor regions
only. Second, instead of penalizing for number of gaps, the
scoring function penalizes for number of anchors in the
alignment path. In particular, we penalize the linkage
between the anchors even if they belong to the same
diagonal of the Needlman–Wunsch matrix (see Materials
and Methods).

3. Specify the alignment path in the regions between the
established anchors. These parts of the alignment have
been left unspecified at the previous step of the algorithm.

The details of each step of the algorithm can be formu-
lated in a number of ways. Special relation between the
run time, accuracy, and confidence can be tuned to the
desirable behavior, depending on exact algorithmic details
and parameter values. The analysis of possible technical
implementations and associated advantages and draw-
backs is out of the scope of this manuscript. Table III
presents the data on the characteristics of the algorithm
version described in Materials and Methods.

Accuracy and confidence of the method have been tested
through comparison with 	13,000 structural alignments
extracted from BaliBase and FSSP databases. Results of
these tests show that the novel method on average is
equivalent to the SW algorithm both in accuracy and

TABLE I. Numbers of Lost and Found Islands Depending on Their Score and Length

1–5 6–10 11–15 16–20 21–25 26–30 31–35 Island

30 .. 35 23 0 48 0 40 0 19 0 8 1 13 0 Length
25 .. 30 2 0 29 1 55 2 46 5 18 2 11 1 13 2
20 .. 25 17 2 46 3 54 10 36 4 26 5 14 3 7 1
15 .. 20 20 7 89 22 60 22 39 6 18 4 9 6 3 3
10 .. 15 20 64 89 69 57 50 50 24 11 13 12 2 3 3
5 .. 10 15 79 46 138 34 99 13 43 11 15 7 8 4 1
0 .. 5 6 92 18 217 13 129 14 45 0 16 1 9 0 2

5 .. 0 6 92 3 189 5 110 3 51 3 13 1 1 0 0

10 .. 
5 0 23 0 100 3 68 0 29 0 12 0 4 0 4

15 .. 
10 0 6 1 21 0 27 0 22 0 9 0 2

20 .. 
15 0 7 0 5 0 8 0 4 1 0

25 .. 
20 0 1 0 2 0 1

30 .. 
25 0 1
Island

Score
F L F L F L F L F L F L F L

Lost GS islands are in subcolumns L, and found GS islands in subcolumns F. The data for islands with the score �35 and the length �35 are only
shown. All islands with score � 35 are found. The number of islands with the score � 35 and the length � 35 (as well as of those with the score
below 
30) is negligible. The shadowed cells are those where the number of lost islands exceed the number of found islands.
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confidence of resulting alignments. As has been stated
above, focusing on high scoring regions can significantly
improve the computational speed of the algorithm. The
current software has been compared with the standard
(see Materials and Methods) implementation of the SW
algorithm. Table III shows that the suggested method
requires about twice a shorter computational time than
the classic SW technique.

We have also compared (see Table IV) the accuracy and
confidence of our algorithm with the BLAST algorithms
[ftp://ftp.ncbi.nih.gov/blast/executables/blastz.exe]. The
table shows that for the twilight zone protein pairs, our
algorithm significantly outperforms BLAST both in confi-

dence and accuracy. However, BLAST requires much
lower run time than the SW algorithm. Approximate
estimates suggest that BLAST is about 15 times faster
than SW algorithm.31

Another approach32 to speed up the Smith–Waterman
algorithm was implemented recently by T. Rognes in the
ParAlign program. The approach aims at reducing run
time of the database search rather than individual align-
ments. First, it adapts the single instruction multiple data
(SIMD) hardware technology to process in a parallel way
the diagonals in the pathway matrix. Second, it uses a
heuristic prealignment procedure to get a rough estima-
tion of the protein similarity and thus to avoid the precise

Fig. 6. Number and total length of irrelevant (white) and relevant (black)—to the gold standard alignment—islands from the Smith–Waterman
alignments, having their scores within a given range. Irrelevant is the SW island with no single site corresponding to any GS island. Otherwise, the SW
island is considered as relevant. Data are shown for linear domain gap penalty setting only. The results for log domain setting are qualitatively the same.
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alignment of nonsimilar proteins. The heuristic is based on
the anchor paradigm, but it substantially differs from our
approach. First, the heuristic gives only a rough estima-
tion of the sequence similarity. The sequences with high
heuristic score have to be subsequently realigned with the
Smith–Waterman method. The necessity of realignment
results from the features of the heuristic scoring function
of the ParAlign (e.g., it uses only one HSP for each

diagonal). The SIMD technology can be implemented to
expedite the most time-consuming step of our algorithm,
the anchor’s generation.

DISCUSSION

In this study, we investigated features of GS structural
alignments in comparison with standard algorithmic align-
ments and proposed a new algorithmic solution for the

Fig. 7. a: Island in the GS alignment of two proteins (PDB codes 1ark and 1vie). The scores of residue substitutions are given according to the
Gonnet250 matrix (values rounded to integers). This island has a negative score (
14); thus, it is lost by the SW alignment algorithm. However, this
island contains a five-residue kernel fragment (underlined) with a positive score of �11. A sequence alignment algorithm using the Gonnet250
substitution matrix could find this kernel, in principle. b: Numbers of lost (subcolumns L) and found (subcolumns F) islands as a function of the island and
kernel scores. Bold characters single out a region of islands with island scores � 10, but with kernel scores of �10. The empty cells contain zeros only.

TABLE II. Island’s Confidence Correlates With the Overall Confidence of the SW Alignment†

No. of
alignments

No. of
islands

with score
� 40

No. of
islands with

zero
confidence %

No. of
islands with

confidence � 2/3 %

a Alignments confidence � 60%
All 73 101 14 13.9 31 30.7
10–30% 69 97 13 13.4 29 29.9

b Alignments confidence �60%
All 338 870 0 0 26 3.0
10–30% 81 168 0 0 8 4.8

†The data shown in the table correspond to the linear domain of gap penalties. Data for logarithm domain are similar.

ANCHOR-BASED PROTEIN SEQUENCE ALIGNMENT 577



alignment problem, which follows from the analysis of
3D-based alignment.

Our results (Fig. 4) show that the relation between the
GS and the algorithmic sequence alignments of a given
protein pair can be expressed in terms of lost and found
islands. Figure 5 shows that the GS islands with the
score � 5 (given Gonnet250 matrix33 in use) constitute a
substantial part of GS alignments, and they have a
negligible chance to be algorithmically reconstructed. The
GS islands of a high score (generally higher than 25) are
almost always found. However, the GS islands with scores
in the range of 10–25 form a twilight zone. The chance of a
particular GS island from a twilight zone to be identified
depends on the presence of competing stretches of subse-

quent high scoring matches in the proteins to be aligned.29

The analysis of high scoring alternative alignment paths is
out of the focus of the current study; we concentrate on the
analysis of properties of the GS islands.

The GS alignments often contain both high and low
scoring islands. This finding suggests that the traditional
substitution scoring functions of form Score � � s(ai,bi)
(see Eq. 3) assess many alignment regions inadequately.
Equation 3 implies that all alignment positions are scored
by a single substitution matrix or, in other words, the
pattern of amino acid substitutions is identical in all sites.
This assumption is well known to be inadequate. Usage of
site-specific information incorporated into profiles16

(PSSMs) or hidden Markov models34 (HMMs) greatly

Fig. 8. The main steps of the suggested alignment algorithm. I: Identification of anchors. II: Creation of the optimal path through the anchors. III:
Refinement of the alignment between the anchors.

TABLE III. Comparison of the Average Run Times, Accuracy, and Confidence of the Alignments,
Produced by the SW Algorithm and the Newly Proposed Anchor Algorithm for the Protein Pairs

From the BAliBase(a) and FSSP (b) Databases†

%ID
No. of
pairs

Accuracy Confidence Run-time

Anchor SW An/SW Anchor SW An/SW Anchor SW An/SW

(a) 10–30% 298 36.1 � 31.4 35.0 � 32.1 1.03 49.6 � 35.5 48.6 � 37.1 1.02 397.5 731.3 0.54
�30% 253 83.2 � 7.0 84.5 � 6.6 0.98 89.1 � 5.7 86.8 � 6.6 1.03 158.8 393.4 0.40

All 583 39.8 � 22.6 40.1 � 24.7 0.99 54.5 � 26.2 49.7 � 27.5 1.10 275.7 552.3 0.50

(b) 10–30% 2605 47.7 � 34.2 48.8 � 33.4 0.98 59.3 � 34.7 59.8 � 31.7 0.99 174.9 316.6 0.55
�30% 10049 98.3 � 1.5 98.5 � 1.2 1.00 98.9 � 1.1 98.7 � 1.1 1.00 169.8 320.4 0.53

All 12671 76.5 � 18.9 78.5 � 18.7 0.97 84.5 � 15 83.4 � 15.4 1.01 170.8 319.5 0.53
†The data are given both for all protein pairs from the testing set and its subsets of the pairs of the twilight zone. For the Accuracy and Confidence
columns, we give also standard deviation. The logarithmic sets of parameters (see Materials and Methods and Appendix) were taken both for
Anchor and SW algorithms. To demonstrate that results do not depend on different size of considered protein families, the two-stage averaging
procedure was applied for the All lines. First, the average values were calculated for each protein family separately. Then the averages of these
values were obtained.

TABLE IV. Comparison of the Average Accuracy and Confidence of Alignments, Produced by the SW Algorithm, the
Newly Proposed Anchor Algorithm and the BLAST Algorithm for the Protein Pairs Represented in the BAliBase†

%ID
No. of
pairs

Accuracy Confidence

Anchor SW BLAST Anchor SW BLAST

10–30% 298 36.1 � 31.4 35.0 � 32.1 26.6 � 20.5 49.6 � 35.5 48.6 � 37.1 44.6 � 28.8
�30% 253 83.2 � 7.0 84.5 � 6.6 81.8 � 8.1 89.1 � 5.7 86.8 � 6.6 87.0 � 5.8
All 583 39.8 � 22.6 40.1 � 24.7 31.9 � 23.8 54.5 � 26.2 49.7 � 27.5 47.8 � 29.0
†The parameter sets for the Anchor and SW algorithm are same as in Table III. The default values of parameters were chosen for BLAST.
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improves alignment accuracy. However, these methods
cannot be used without additional information on site-
specific amino acid probabilities extracted from multiple
alignments.

Although independence of the substitution matrix from
the site-specific context is likely to be a major reason for
the presence of numerous low scoring islands in structural
alignments, it is definitely not the only reason. First,
commonly used scoring matrices do not reflect exactly
average statistics of amino acid substitutions in GS align-
ments. Table V shows that usage of matrices extracted
directly from structural alignments (and restricted to
specific sequence identity interval) significantly reduces
the number and length of negatively scored GS islands.
Analysis of low positively scored islands is difficult because
of different scaling of these matrices.

The question arises of why commonly used matrices
inadequately represent statistics of amino acid substitu-
tions in GS alignments.

The matrices of Gonnet33/PAM35 series are based on the
Markovian models of the process of amino acid substitu-
tions. This approach relies on the neutral evolution theory18

and the concept of molecular clocks.18 There are two basic
assumptions under this model: 1) divergence time can be
estimated from amino acid sequence identity (which implic-
itly implies that evolutionary rate is identical for all sites
in the sequence and for different sequences) and 2) prob-
abilities of amino acid substitutions at a given divergence
time depend solely on amino acid types. In other words, the
pattern of natural selection does not vary among sites,
proteins, and protein families. It is known that both
assumptions are not valid in the strict sense for protein
sequences.36 This might constitute a reason for deviations
of amino acid substitution statistics suggested by the
scoring matrix from statistics observed in GS alignments.

The matrices of BLOSUM37 series were computed for
conserved ungapped blocks. Therefore, they reflect specific
features of regions with a low evolutionary rate and may
inadequately score the more divergent segments. This can

be an advantage in homology search application but can be
a disadvantage if a complete and accurate sequence align-
ment is desirable (e.g., for homology-based 3D modeling).
In addition, different conservative regions may also dis-
play distinct substitution statistics.

Recent studies38 propose new models of amino acid
sequence substitutions, which take into account differ-
ences in the evolutionary rates, site specificity, and differ-
ences in selective constrains. We did not address these
models because they are not yet widely used for practical
purposes and often rely on specific information additional
to amino acid sequence.

Another implicit assumption underlying the scoring
function (Eq. 3) is the assumption of independence of the
alignment positions. Additive form of the scoring function
implies that every amino acid pair is scored independently
on its position along the alignment. To be more precise,
total substitution score is defined as a logarithmic ratio of
joint likelihoods in the multiplicative form.39 Thus, the
assumption of independence of positions is directly intro-
duced into the additive form of substitution-scoring func-
tion.

Assessment of validity of the site independence assump-
tion is presented in Table VI, which shows that the
substitutions within the same ungapped segment (island)
cannot be considered as independent. According to the
contingency table �2 test,39 the hypothesis of the indepen-
dence of substitution score in islands has to be rejected
with p value 5 � 10
17. Table VI also shows that different
protein families vary in the level of positional dependence
of score.

Figure 9 illustrates this effect for three families by
comparison of the original distribution of islands’ scores
with the distribution obtained for the same GS islands
after random shuffling of alignment positions.

This result is complementary to the observation that
many low scoring islands of structural GS alignments are
inhomogeneous and contain internal high scoring kernels.
This observation, together with the observation that the
SW algorithm almost never identifies true islands when
they have no significant kernel [Fig. 6(b)], shows that
quick algorithms that explicitly address possible kernels
(high similarity regions) should not necessarily have lower
accuracy than the SW search.

Classic approaches such as the Wilbur–Lipman algo-
rithm,40 FASTA,3 and BLAST4 reduce the search space by
focusing on high similarity regions and, therefore, have
considerable increase in the computational speed. How-
ever, this strategy has been considered as an approxima-
tion of the true additive scoring function. FASTA and
BLAST algorithms use a standard scoring around identi-
fied regions of high similarity. The Wilbur–Lipman method
builds chains of high similarity kernels by using additive
score over these kernels without a penalty. Regions of
lower similarity are left unaligned by the method.

On the other hand, scoring functions designed to pro-
duce more adequate alignments41,42 were not tested on a
large-scale basis and, therefore, probably did not attract
the attention they would probably deserve. These methods

TABLE V. Numbers and Lengths of Negatively Scored
Islands in the Gold Standard Alignments From BAliBase

for Different Substitution-Scoring Matrices Applied

Matrix Blosum62 Gonnet250
BAliBAse

based

No. of
negative
islands

1374 936 799

Total length
of
negative
islands

16833 10600 8674

Two first columns correspond to commonly used matrices Gonnet250
and BLOSUM62. The third column is obtained with the scoring
matrices, computed from the BAliBase alignments. The latter matri-
ces were computed for three categories of alignments (with sequence
identity �25%, 25–50% and �50%) separately, according to the
formulas given in Ref. 37. The BAliBase scores of the islands were
calculated by using the matrix corresponding to the identity of
compared protein sequences in the GS alignments.
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differ from our approach mainly because they treat lower
similarity regions between stronger matches essentially as
gaps and penalize them accordingly. Thus, they do not
allow these regions to be long and do not try to align them
in any reasonable way after high similarity alignment
elements have been found and the major alignment path
has been determined.

Unlike methods described above, our algorithm takes a
hierarchical approach that applies different scoring
schemes to alignment regions according to degree of
similarity. After high-similarity anchors have been con-
structed, it builds a major alignment backbone (chain of
anchors) by using a scoring function that penalizes for
number of anchors in the alignment. Each of the lower
similarity regions left unaligned at the first step can be
treated now as a region to be aligned. Because the search
space in each of these yet unaligned regions is limited,
they can be efficiently aligned by the global alignment
dynamic programming (Needlman–Wunsch-like) with the
standard additive scoring function and the standard affine
gap penalty.

Two different strategies to build initial alignment back-
bone based on high-similarity anchors can be implemented

to use the reduction of the search space and gain computa-
tional speed. If the search space is large, one can use the
sparse dynamic programming approach proposed by Epp-
stein et al.43 because its time complexity grows linearly
with number of high scoring segments. Therefore, the
sparse dynamic programming technique provides an effi-
cient way to build an alignment path if the number of
anchors is considerably high. However, in a smaller search
space (e.g., for shorter protein sequences and greater
anchor score thresholds), our method relies on the Wilbur–
Lipman algorithm. Although asymptotically slower, this
algorithm is faster in practce if the search space is not
large and has been experimentally shown (data are not
shown) to be preferable for protein of normal length.

Although the results presented in Table III report that
our method is 	2 times faster than the SW search, two
points are noteworthy. First, as any method that ad-
dresses only high-similarity alignment elements at the
initial step, our method is potentially much faster as a
database search tool. Therefore, the advantage over the
SW algorithm in computational time exceeds the result of
Table III if the database search problem is considered.
Second, our method can be tuned to various regimens
mostly by changing the anchor threshold. If a slight loss of
accuracy is tolerated, the algorithm can be switched to a
much faster behavior.

TABLE VI. Results of the �2 Test for Hypothesis of
Independent Distribution of Substitution Scores

Over the GS Islands

BaliBase
family

Number
of GS

islands P value

1havA 1642 4.2 � 10
7

1tgxA 568 1.3 � 10
5

1aboA 336 0.958
Kinase 280 3.4 � 10
9

1csy 256 0.003
1sbp 227 0.815
1pamA 165 0.388
1lvl 139 0.043
1ajsA 118 0.121
2pia 96 0.037
1cpt 92 0.089
2hsdA 82 4.1 � 10
4

3grs 81 0.459
1tvxA 76 0.394
1wit 69 0.010
1ped 66 0.025
1uky 57 0.310
4enl 53 0.099
1ubi 42 0.872
2trx 39 0.293
1r69 31 0.069
1idy 26 0.845
All BAliBase 4699 5.1 � 10
17

Family names as given in the BAliBase are listed in the first column
(most of them are the PDB identifiers of one of the family members).
The p value has a sense of probability that the hypothesis of
independent distribution is valid. It is seen that this hypothesis is
definitely not valid for some families (with p��1) as well as for the
BaliBase as a whole. However, half of the families (with p � 0.1–1),
including one fourth of the islands, do not show reliable deviations
from the independence hypothesis.

Fig. 9. Effect of random shuffling of the GS alignment columns on the
number of negatively scored islands. The shuffling has been performed,
separately for each protein alignment, by redistributing of the aligned
amino acid pairs along the alignment (while the columns with gaps remain
untouched). Results are presented for three BAliBase families: 1tgxA
(cardiotoxins), kinase (protein kinases), and 1aboA (SH3 domains). White
bars indicate the number of negative islands in the GS alignments,
whereas black bars indicate the number of negative islands in the
randomly shuffled alignments. The diagram shows that the shuffling does
not change the number of negatively scored islands significantly in the
case of 1aboA (which complements the insignificant P-value given in
Table IV). For the kinase family, the number of negative islands consider-
ably decreased after the shuffling. We note that this is a general case for
families of low p values in Table IV. The 1tgxA family is an important
exception. Almost every island in the alignments of this family contains
one highly conserved cystein residue. These aligned cystein residues
serve as a skeleton of the alignment. The shuffling often gathers several
columns of aligned cysteins in one island. Correspondingly, the other
islands lose their aligned conserved cysteins, and their scores become
negative.
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CONCLUSIONS

We investigated correspondence between GS align-
ments of 3D protein structures and sequence alignments
produced by the Smith–Waterman algorithm. The compari-
son of the alignments is focused on their inner structure
and specifically on the continuous ungapped alignment
segments, which we call islands. Approximately one third
of the islands in the GS alignments have negative or very
low positive score (according to the commonly used scores),
and recognition of these islands is below the sensitivity
limit of the standard sequence-comparison algorithms.
From the alignment accuracy perspective, the time spent
by the algorithm while working in the regions where
sequences cannot be aligned in principle is left without any
profit. This finding inspired us to develop a novel hierarchi-
cal method to align a pair of protein sequences. At the first
step, this method explicitly addresses the most similar
fragments of compared sequences (the anchors). Further-
more, the method finds the optimal alignment pathway
through the precalculated set of anchors and fills in (with
Smith–Waterman-like method) the remaining compara-
tively short gaps between the anchors belonging to the
optimal pathway. The resulting algorithm is considerably
faster than the Smith–Waterman algorithm, whereas
resulting alignments are on average of the same quality
with respect to the GS. This finding shows that the
decrease of alignment accuracy is not necessarily a price
for the computational efficiency.
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APPENDIX: THE ANCHOR-BASED
ALIGNMENT ALGORITHM

The proposed alignment algorithm (illustrated in Fig. 8)
consists of the following steps:

Step 1. We generate a set of ungapped high-scoring
segments (anchors). Anchor is an ungapped matching of
equal-length fragments, {U[a, a�L] vs V[b, b�L]}, of
sequences U and V. These fragments meet the following
conditions (cf. with BLAST HSPs):

a) Anchor contains at least one seed pair {U[x, x�1] vs
V[y, y�1]} with the score exceeding a cutoff CSeed

b) The anchor’s score (i.e., the sum of the substitution
scores M(U[x], V[y]) over the anchor) exceeds a cutoff
CAnchor

c) The score of any continuous part of the anchor exceeds a
cutoff CMin

d) The anchor is locally maximal, that is, 1) it is not a part
of any other pair of segments {U[a�, a��L�] vs V[b�,
b��L�]} meeting conditions a–c and having greater or
equal score, and 2) it does not include any continuous
part having a greater score.

Step 1 starts with identification of seed pairs. Seeds are
further expanded to obtain the anchors. This step is
similar to procedures used in BLAST and FASTA. This is
the most time-consuming step of our algorithm.

Step 2. We find the optimal block alignment path
through the set of anchors. Block is a continuous part of
an anchor. Block alignment is a chain of the blocks {B1,
…, BN}, where Bi precedes Bi�1 both along U and V
sequences. The block alignment {B1, …, BN} is optimal if
it has maximal possible block score, which is defined as
follows:

Score�B1, …, BN� � Score�B1�-Link�B1,B2�

� Score�B2� - … - Link�BN-1,BN� � Score�BN�

Score(Bi) is the total score of matches along block Bi

according to the given substitution matrix M.
Link(Bi,Bi�1) � � � �●�(y-x) 
 (y�-x�)� is the linkage
penalty for the blocks Bi and Bi�1, where � (linkage open
penalty, LOP) and � (linkage elongation penalty, LEP)
are analogs of the traditional gap opening (GOP) and
gap elongation penalties (GEP), whereas x, y are the last
residues of block Bi, and x�, y� are the first residues of
block Bi�1 in sequences U and V, respectively. Note that
we penalize links between the blocks even if the blocks
are placed on the same diagonal.

Step 3. We specify the alignment path in regions be-
tween the blocks by connecting consecutive anchors via
standard global dynamic programming. In case the result-
ing connecting path has a score below a given cutt-off LST,
the region is left unaligned. Our experiments show that
usually this final step comprises only a small part of the
total run time of our algorithm.

The data shown in Table III correspond to the following
values of parameters: CSeed � 8, CAnchor � Cmin � 20,
LOP � 15, LEP � 0.5. The final step of the dynamic
programming implied GOP�15 GEP�1 and LST�
25.

To find the optimal block alignment from the created set
of anchors we have implemented two algorithms: the
Wilbur–Lipman algorithm40 and the sparse dynamic pro-
gramming method43 (SDP). These procedures produce the
same alignments (given the same parameters and set of
anchors), but they differ in the run time: the Wilbur–
Lippman algorithm run time is proportional to K2, whereas
the SDP run time is of order K*log(L), where K is number
of anchors and L is length of the shorter sequence. The
Wilbur–Lipman procedure performs faster for small val-
ues of K because of much simpler technique in use,
whereas the SPD method is more efficient in case of large
K corresponding to longer sequences. Our experiments
have shown that in realistic protein sequences the best run
time can be achieved by the Wilbur–Lipman method.

582 S.R. SUNYAEV ET AL.


