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ABSTRACT
Motivation: As a first approximation, similarity between
two long orthologous regions of genomes can be rep-
resented by a chain of local similarities. Within such a
chain, pairs of successive similarities are collinear (non-
conflicting), i.e. segments involved in the nth similarity
precede in both sequences segments involved in the
(n + 1)th similarity. However, when all similarities between
two long sequences are considered, usually there are
many conflicts between them. Although some conflicts
can be avoided by masking transposons or low-complexity
sequences, selecting only those similarities that reflect
orthology and, thus, belong to the evolutionarily true chain
is not trivial.
Results: We propose a simple, hierarchical algorithm of
finding the true chain of local similarities. Starting from
similarities with low P-values, we resolve each pairwise
conflict by deleting a similarity with a higher P-value. This
greedy approach constructs a chain of similarities faster
than when a chain optimal with respect to some global
criterion is sought, and makes more sense biologically.
Availability: A software tool OWEN based on the
proposed approach is described in the accompanying
note and is freely available at ftp://ftp.ncbi.nih.gov/pub/
kondrashov/owen.
Contact: kondrashov@ncbi.nlm.nih.gov
Supplementary information: Algorithm Chain and exam-
ples of chains of local similarities are available at ftp://ftp.
ncbi.nih.gov/pub/kondrashov/owen/extra.

INTRODUCTION
Since all modern cells originated from the common
ancestor (Doolittle, 2000), similarity can be found be-
tween every two genomes. However, the nature of this
similarity depends strongly on the evolutionary distance.
Gene order is poorly conserved between phylogenetically

∗To whom correspondence should be addressed.

remote genomes, despite strong conservation of some
orthologous genes (Wolf et al., 2001). Comparing such
genomes mostly means comparing unordered sets of
protein sequences they encode.

In contrast, the order of orthologous genes is partially
preserved between less distant genomes. In particular, re-
gions of large-scale collinearity exist within all vertebrates
(Venkatesh et al., 2000) and all flowering plants (Eckardt,
2001). Thus, and since protein-coding exons constitute
only a minority of the genomes of multicellular eukary-
otes, these genomes must be compared by aligning their
long, collinear regions (Miller, 2001). Finding such re-
gions is an important problem (Hannenhalli and Pevzner,
1999; Zafar et al., 2001)), which is not addressed here.

The degree of similarity between collinear regions
of not-too-similar genomes is highly variable. Nearly-
identical segments alternate with those possessing no
meaningful similarity (Jareborg et al., 1999; Shabalina
and Kondrashov, 1999). Thus, gene order is much more
conservative than many nucleotide sites. Comparison of
such genomes (e.g. of human and mouse) is better done in
terms of sets of local similarities, and some regions should
remain unaligned (Schwartz et al., 2000; Miller, 2001). Of
course, for pairs of very similar genomes, such as human
and chimpanzee, global alignment makes perfect sense
(e.g. Kent and Zahler, 2000).

Local similarities between orthologous segments of
genome regions with large-scale collinearity are also
mostly collinear (successive, non-conflicting), i.e. follow
in the same order in both genomes (Schwartz et al.,
2000). In other words, macrocollinearity usually im-
plies microcollinearity (Rossberg et al., 2001) because
the rate of divergence of rapidly evolving segments of
genomes exceeds the rates of processes that disrupt
microcollinearity, such as evolution due to duplications,
inversions, transpositions, and convergence. Biologically,
orthologous local similarities correspond either to units
of function and selective constraint or, perhaps, to cold
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spots of mutation (Shabalina et al., 2001). Still, when
all local similarities between two long sequences are
considered, usually there are numerous conflicts between
them, although many conflicts involve rogue similarities
between transposons and microsatellites, which can be
recognized and masked (Miller, 2001).

Thus, although overall similarity between two macro-
collinear genome regions can be mostly represented by the
‘evolutionarily true’ chain of microcollinear local similar-
ities between their orthologous segments (Schwartz et al.,
2000; Shabalina et al., 2001), finding local similarities that
belong to this chain is not trivial. We will concentrate on
this task, and treat the procedure of finding individual local
similarities (e.g. Smith and Waterman, 1981; Lipman and
Pearson, 1985; Altschul et al., 1997; Zhang et al., 1998;
Arslan et al., 2001) as a parameter.

In order to find a chain of local similarities, one must
resolve all conflicts by erasing some conflicting local
similarities completely or, if this is enough to resolve
a conflict, by trimming them. Schwartz et al. (2000)
described two methods of finding the true chain, both of
which seek the chain which is optimal as a whole, i.e.
maximizes some global score. In this paper, we propose
another approach, which does not seek the optimal chain.
Instead, we resolve each pairwise conflict that needs to
be resolved in favor of the stronger local similarity. The
presentation will be in terms of pairwise comparison, and
our software tool OWEN (Ogurtsov et al., 2002) currently
handles only two genomes, although multiple genomes
can be compared in the same way.

INFORMAL OVERVIEW OF THE APPROACH
Our simple, hierarchical, greedy approach is motivated
by an observation that the pattern of similarity between
long collinear regions of moderately similar genomes
is rather different from that between moderately similar
relatively short DNA or protein sequences. In the second
case, the degree of similarity is often rather uniform,
and parts of the global alignment which are significant
per se cover only a small fraction of sequences. Thus,
we cannot proceed greedily and need to optimize some
global scoring function of the whole alignment. Building
blocks of alignments of uniformly similar sequences are
matches of individual letters, and conflicts between them
are ubiquitous.

In contrast, moderate genome-level similarity is patchy,
and building blocks of genome alignments are local sim-
ilarities of some lengths, many of them individually sta-
tistically significant. When a pair of significant local sim-
ilarities is in conflict, it indicates that a microcollinearity-
disrupting event did happen during evolution of the com-
pared genomes from the common ancestor (Figure 1). If
so, two possibilities emerge.
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Fig. 1. Types of conflicts between local similarities, shown as
diagonals on the dot-matrix. (a) A severe conflict due to similar
segments appearing in the opposite orders in the two sequences.
(b) A severe conflict due to complete overlap of similar segments.
(c) A mild conflict due to partial overlap of similar segments. Here,
the conflicting similarities can be reconciled, by trimming their
ends.

First, microcollinearity could have been violated due
to local convergent evolution or to insertion, into one
genome, of a repetitive sequence that is also present,
at a different location, in the other genome. In this
case one of the conflicting similarities does not involve
orthologous sequences, and the pattern of orthology can
still be presented by a chain. Second, microcollinearity
could have been violated due to local reshuffling of
segments of one or both sequences (Figure 1a) or to small-
scale duplication(s) (Figure 1b). In this case, similarities
between all orthologous segments do not form a chain.

In the first case, convergent evolution of sequences
rarely makes them profoundly similar, so that orthology
after such evolution is probably reflected by the strongest
of the conflicting similarities. Insertion of a repeat can lead
to a strong non-orthologous similarity, so it is better to
mask repeats. However, even in this case the orthologous
similarity can be stronger than any of several collinear
non-orthologous similarities that conflict with it. If so,
only individual resolution of conflicts between similarities
will find the true chain (Figure 2).

In the second case, it is hard to say which of the con-
flicting similarities between orthologs must be kept in the
chain, and which are to be erased (and, perhaps, recorded
as ‘footnotes’ to the chain). Keeping the strongest similar-
ity obviously makes sense.

Thus, the simplest rule of always keeping a stronger
similarity is justified. In this paper, ‘stronger’ will mean
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Fig. 2. Comparison of mouse (AF139987) and human (AF045555)
sequences. The strongest, orthologous similarity H corresponds
to exon 10 at locus Rfc2 (nucleotides 104514–104583 in the
mouse sequence). Since non-orthologous similarities A1, A2, and
A3 constitute a chain with a score higher than that of a chain
consisting of H alone, seeking the optimal as a whole chain using
PipMaker (Schwartz et al., 2000) or option Optimal in OWEN
(Ogurtsov et al., 2002) erases H . In contrast, resolving conflicts
individually (option Greedy in OWEN) keeps H and erases A1, A2,
and A3. Of course, if H were of secondary origin, and A1, A2, and
A3 were orthologous, only seeking the optimal as a whole chain
would produce the correct result.

‘having a lower P-value’, but OWEN also allows human
intervention in resolving individual conflicts (Ogurtsov et
al., 2002).

We can now formulate two basic principles of our
approach to finding the true chain of local similarities:

(1) All conflicts between a statistically significant simi-
larity and any number of weaker similarities are resolved
in favor of the former. Thus, a similarity that does not con-
flict with any stronger similarity is always included into
the chain.

(2) Principle 1 holds both for the whole sequences
to be compared and for any pair of their orthologous
subsequences (‘fractality’). This is important because a
similarity that is not significant when we compare two
sequences of length 107 may become significant when the
lengths are reduced (after other, stronger similarities have
been found) to 103. Thus, stronger similarities provide
statistical support for those weaker similarities that do not
conflict with them.

We call the chain of local similarities that is found by
applying these principles backbone chain and hope that
it is close to the evolutionarily true chain that reflects
orthology. We start assembling the backbone chain from
the strongest similarity, then add to it the strongest

similarity that does not conflict with the first one, etc.
Algorithmically, resolving conflicts individually is a stone
that kills two birds.

First, we can use a greedy algorithm to select the
backbone chain from any set of conflicting similarities.
Second, we can create this set hierarchically, i.e. start
from finding only very strong similarities and resolve
all conflicts between them, then independently screen
gaps between successive strong similarities for weaker
similarities, etc. Thus, time-consuming screening of the
whole dot-matrix for all weak similarities can be avoided.

FORMAL BACKGROUND
Here we introduce terminology that is necessary to
define the backbone chain of local similarities between
sequences U and V and to describe algorithms that find it.
The segment of U (V ) starting at the position b and ending
at the position e is denoted U [b, e](V [b, e]).
Local similarities
A similarity H between U and V is a pair of segments
U [b1, e1] and V [b2, e2] together with their alignment
Al(H) and its score Score(H). These segments are
referred to as U-domain and V-domain of the similarity,
denoted Domain(H, U ) (Domain(H, V )). The beginning
and the end of the U -domain of H are Beg(H, U ) and
End(H, U ), respectively, and the analogous notations are
used for the V -domain. We do not specify an algorithm
of finding H and the corresponding alignment, or how
a score is assigned to the alignment. We only assume
that the score increases with the number of matches, and
decreases with the number of mismatches and gaps within
the alignment, so that alignments with higher scores are
‘better’. Later, some restrictions on alignments and their
scores will be introduced.

Let H be a similarity between segments U [b1, e1] and
V [b2, e2] and G be a similarity between U [c1, f1] and
V [c2, f2], where [c1, f1] is a subfragment of [b1, e1] and
[c2, f2] is a subfragment of [b2, e2]. The similarity G is a
subsimilarity of H , if Al(G) is a subalignment of Al(H),
i.e. if Al(G) establishes the same correspondence between
letters from U [c1, f1] and V [c2, f2] as does Al(H).

Chains of local similarities
Similarity H1 precedes similarity H2 (notation: H1 < H2)
if the U -domain of H1 precedes the U -domain of H2
and the V -domain of H1 precedes the V -domain of H2,
i.e. if End(U, H1) < Beg(U, H2) and End(V, H1) <

Beg(V, H2). Similarities H1 and H2 are in conflict, if
neither H1 precedes H2, nor H2 precedes H1. Two
similarities that are not in conflict are collinear. A chain
of similarities is a set of similarities {H1, H2, . . . , HN }
in which every two similarities are collinear, ordered
according the relation of precedence.

1675

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/18/12/1673/239494 by guest on 21 M
ay 2020



M.A.Roytberg et al.

A similarity H is collinear to the chain of similarities
B = {H1, H2, . . . , HN }, if it is collinear to all members
of B. If H is collinear to B, H follows kth similarity of B
(or H can be included between kth and (k +1)th similarity
of B), where 1 � k � N − 1, if Hk < H < Hk+1. For
k = N this means that HN < H , and for k = 0 this means
that H < H1.

Quality of a local similarity
The quality of a similarity can be characterized by its P-
value (Durbin et al., 1998; Mott, 2000). Informally, P-
value of a similarity with score S within U and V is the
probability that a pair of sequences with the same lengths
and statistical properties as U and V contains at least one
similarity of score S or higher. Thus, highly significant
similarities have low P-values.

Let P(S, L1, L2) be P-value of a similarity between
sequences of lengths L1 and L2 with score S. For our
purposes, the only important things are that 0 � P � 1
and that P(S, L1, L2) decreases with the increase of S and
increases with L1 and L2 (informally, P ‘normalizes’ the
score S by L1 and L2).

Reliability of similarities and their chains
Let H be a similarity between the fragments U [c1, f1] and
V [c2, f2] and ε be a number between 0 and 1. Consider
fragments U [b1, e1] and V [b2, e2] containing U [c1, f1]
and V [c2, f2] respectively, i.e. b1 < c1 < f1 < e1 and
b2 < c2 < f2 < e2. Similarity H is ε-reliable within
U [b1, e1] and V [b2, e2] if P(Score(H), e1 − b1 + 1, e2 −
b2 + 1) < ε.

Let F be a chain of similarities and H be a similarity
from F . Consider a sub-chain FH of F consisting of
all similarities having scores higher than Score(H). The
similarities from FH divide the compared sequences into a
series of pairs of segments and the similarity H belongs to
one of the pairs of segments, say, U [c1, f1] and V [c2, f2].
H is ε-reliable in F if H is ε-reliable within U [c1, f1]
and V [c2, f2] (Figure 3). A chain of similarities F is ε-
reliable, if every similarity from F is ε-reliable in F .

Comparing sets of similarities
Let R be a set of similarities and 〈R〉 be the vector of
scores of all similarities from R, in decreasing order. Let
r = 〈r1, r2, . . .〉 and s = 〈s1, s2, . . .〉 be different vectors
of scores (possibly, of different lengths). We will use the
following lexicographic procedure to compare r and s.
If for some k rk and sk are different, r > s (r < s) if
rk > sk(rk < sk) for the smallest k for which rk �= sk .
Otherwise, the longer vector is greater. Among two sets of
similarities R and Q, R is stronger than Q if 〈R〉 > 〈Q〉.
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Fig. 3. The concept of ε-reliability of a similarity within a chain.
Consider the chain F = {A1, H, A2, A3} and suppose that
Score(H) < Score(A2) < Score(A3) < Score(A1), so that
FH = {A1, A2, A3}, FA2 = {A1, A3}, FA3 = {A1}, and FA1
is empty. Then, for example, A2 is ε-reliable in F , if it is ε-
reliable in the marked region U [End(A1, U ) + 1, Beg(A3, U ) − 1]
∗ V [End(A1, V ) + 1, Beg(A3, V ) − 1] between the similarities A1
and A3. A1 is ε-reliable in F , if it is ε-reliable within the whole
sequences U and V .

Backbone chain
The chain of similarities F is a backbone chain of a set of
similarities R (with a given P-value cutoff ε), if

(a) F is ε-reliable,

(b) every similarity from F belongs to R or is a
subsimilarity of an element from R,

(c) no other chain of similarities that satisfies (a) and (b)
is better than F .

ALGORITHMS
Here we describe algorithms that find the backbone chain
of similarities for sequences U and V at the level of
reliability ε. The backbone chain is assembled from a
given set R of N similarities. We assume that we never
have to choose between two conflicting similarities of
exactly the same score (‘different scores condition’). This
assumption allows us to avoid algorithmically clumsy and
biologically unimportant situations that can be resolved
by a heuristic. We also assume that we possess an
algorithm SetLocSim (int BegU , BegV , EndU , EndV ,
real ε) that finds the set of all similarities with domains
within U [BegU, EndU ] and V [BegV, EndV ], which are
ε-reliable within this region.

We can proceed in two ways. First, we can find the
backbone chain under assumption that all similarities from
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R have already been found. This is done by algorithm
Chain. In the ‘basic’ case (the backbone chain contains
only the initial similarities, and not their subsimilarities,
Figure 3) run-time of Chain is ∼ N · log(T ), where
T is a number of similarities in the backbone chain. In
the general case when some similarities overlap (their U -
domains and/or V -domains have non-empty intersection)
the run-time depends on the number of overlapping
similarities, but usually is ∼ N · log(N ), if conflicts
between overlapping similarities can be resolved by
constructing their subsimilarities.

Alternatively, we can avoid finding all elements of R
and proceed hierarchically. This is done by algorithm
Fractal which generates (using SetLocSim) the necessary
subsets of R and extracts, using a modification of Chain,
from each of them the corresponding part of the backbone
chain. In the worst (and extremely improbable) case the
run-time of Fractal is the same as that of Chain. Normally,
Fractal finds the backbone chain in time c(ε) · T , where
c(ε) depends only on ε.

We start from describing Fractal, which is implemented
in OWEN. After this, Chain will be described, first for the
basic case and, finally, for the general case.

Algorithm fractal
Let us define S-restriction of a set of similarities as its
subset consisting of all similarities with scores S or higher.
One can find S-restriction KS of a backbone chain K ,
knowing only S-restriction RS of R. Indeed, let K be
the backbone chain of R with a P-value cut-off ε. Then,
for an arbitrary S, KS coincides with the S-restriction
of the backbone chain of RS with the same ε (‘greedy
statement’).

Fractal utilizes this statement in the following way.
Let P(S, length(U ), length(V )) = ε, so that S is the
minimal score corresponding the P-values ε or lower
within the whole sequences U and V . Fractal creates
(using SetLocSim) the subset RS of all similarities with
the scores S or higher and constructs (using a modification
of Chain) the S-restriction KS of the backbone chain
of RS . Then, all elements of KS belong to the final
backbone chain for U and V . Thus, it is enough to process
independently pairs of segments of U and V (‘boxes’)
between successive similarities from KS .

Fractal uses greedy paradigm twice. First, it hierarchi-
cally implements the greedy statement. Second, extrac-
tion of the backbone chain from the current set of sim-
ilarities is performed by greedy algorithm Chain. Let us
define box 〈b1, e1, b2, e2〉 as a pair of segments U [b1, e1]
and V [b2, e2] of sequences U and V . Fractal (Figure 4)
operates with two global objects:

(i) the list of similarities BackboneChain (which finally
contains the desired backbone chain) and

(a)
ALGORITHM Fractal (sequence U, sequence V, real epsilon)
BEGIN

// Prologue
1. Mask transposones and low complexity regions in the sequences U and V;
2. BackboneChain := empty;
3. MainBox := <1, length(U), 1, length(V)>;
4. WorkBoxList := {MainBox};

//  Main Loop
5. WHILE  WorkBoxList is not empty DO BEGIN
6. CurrentBox := first (WorkBoxList);
7. delete CurrentBox from WorkBoxList;
8. ProceedBox (CurrentBox, epsilon);
9. END_WHILE

//  Epilogue
10. RETURN BackboneChain;
END_ALGORITHM

(b)
ALGORITHM ProceedBox (box CurrentBox, real epsilon)
BEGIN

// Prologue
//  Let CurrentBox = <b1, e1, b2, e2>, i. e. it
// corresponds to the segments U[b1, e1] and V[b2, e2].
//  We create temporary sequences U_Temp and V_Temp to be
// compared and calculate their lengths L_U and L_V.

1. U_Temp = U[b1, e1];
L_U = length(U_Temp);

2. V_Temp = V[b1, e1];
L_V = length(V_Temp);

//  Find the Score cut-off S, corresponding to the given P-value cut-off epsilon.
3. S = min{Score_P (Score, L_U, L_V) � epsilon};

// Main Part
//  Construct a set CurrentSim of all local similarities within
// U_Temp and V_Temp, having P-value less than a cut-off epsilon

4. CurrentSim = SetLocalSim(b1, e1, b2, e2, epsilon);
5. IF (CurrentSim is NOT empty)  // the similarities do exist
6. THEN

//  Extract the S-restricted backbone chain
// CurrentBackboneChain for the set CurrentSim and
// the P-value cut-off epsilon

7. CurrentBackboneChain= Chain_R(CurrentSim, epsilon, S);
8. include CurrentBackboneChain into Backbone_Chain;
9. Construct the series of boxes within the CurrentBox, which are separated with 

  the local similarities from the CurrentBackboneChain;
10. include the boxes into WorkBoxList;
11. ELSE
12. Construct a set AllWeakSim of all local similarities ;

 within U_Temp and V_Temp, having P-value less than a cut-off P_Weak, 
 which is “weaker” (i.e. larger) than epsilon;

13. Create an optimal (i.e. having maximal total score) chain of local similarities
       from AllWeakSim;

14. IF the optimal chain is significant as a whole
15. THEN
16. include the chain into the WeakChainSet;
17. END_IF
18. END_IF
END_ ALGORITHM

Fig. 4. Algorithm Fractal (a) and its function ProceedBox (b).

(ii) the list of non-intersecting boxes WorkBoxList,
which consists of all boxes to be processed.

We start with empty BackboneChain and with Work-
BoxList, containing only the box corresponding to the
whole initial sequences. To process the current box
we first create the corresponding set of similarities
CurrentLocSim (line 4, Figure 4b) and then extract
the S-restricted backbone chain CurrentBackboneChain
from the set (line 7). The procedure Chain R (line 7) is
described below. CurrentBackboneChain is not empty
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a)
TCTGGTTAACTTTGTTAGCTAGTTGTTAAGATACTCGACAGCTGCAGAAACCAACTCGGAGAAGGACGGTGGGCTTCAGTGCCACCATCTCATGCAAGCA
|||  ||  |||| ||  | | | |    || |||| |    ||||  ||||  |||  |  ||  | |||     ||||||||  |   |||| |
TCTTTTTGTCTTTCTTCTCCACTGGGATGGAAACTC-ATGAGTGCAAGAACCTTCTCCTACTAGCTCAGTGCATCCCAGTGCCA--AGTGCATGGACTGG

AGCAAACTCGCTGTTTACTTCACATTAATTGCACG
  || | | | |||| | |   ||||  ||| | |
CCCATAGTAGGTGTTCAATATGCATTTGTTGAATG

b)
GAGGCGCGGCGTGCCGGGCGCCGAGGTGCTGGGGAGGGCCGGGGAGAGCCCCTGTGAGGAGCGGTGAGTGTCCCTCCG
| |  ||||||   ||| ||  |||| | ||||| | |||      | ||  | ||||   ||  | | |  ||| ||
GTGAGGCGGCGCAGCGGCCGGAGAGG-GATGGGGGGCGCC-----CACCCAGTCTGAGCCTCGCCGCGGGCGCCTTCG

Fig. 5. (a) A local similarity between pufferfish and human sequences found by OWEN ∼2400 nucleotides upstream (in puffferfish sequence)
of region E6 (Bagheri-Fam et al., 2001). (b) A local similarity between chicken and human sequences that includes the start of KIAA1386
transcript.

because the set CurrentLocSim is not empty. Then we
include similarities from the CurrentBackboneChain
into the BackboneChain (step 8) and add the boxes
corresponding to the intervals between the elements of
the CurrentBackboneChain to the WorkBoxList (lines 9
and 10). If CurrentBackboneChain is empty (there are no
ε-reliable similarities within the current box), a global
alignment for the box (lines 12–17) may be of interest.

The number of boxes to be processed is no more than
2T + 1, where T is the number of similarities in the final
backbone chain. Therefore, ProceedBox is called (line 8,
Figure 4a) no more than 2T + 1 times, and the run-time of
all lines in Figure 4a, except the line 8, is proportional to
T .

To estimate the run-time of ProceedBox, consider the
size M of the set CurrentSim of ε-reliable similarities
within the current box. We cannot give a non-trivial (lower
than proportional to the area of the box) general upper
bound for M . However, in real situations M is small
and depends mostly on ε (and not on the size of the
box). To make this statement rigorous, one has to refine
the definition of P(S, L1, L2) and the probability model
(including the hypothesis on the relations between the
compared genomes). This is beyond the scope of the
paper, and only an informal argument is presented here.

M can be represented as M = Mb + Mr where Mb is a
number of ‘evolutionarily true’ similarities in CurrentSim,
and Mr is the number of random ε-reliable similarities. As
long as ε is small, Mr is low, and Mb, since orthologous
similarities are collinear, cannot be very high and declines
with ε. Thus, the value of M and, therefore, the run-time
of ProceedBox is a function c(ε) and the total run-time of
Fractal is c(ε) · T .

Overview of algorithms Chain Basic and Chain
Chain Basic and Chain find the backbone set of similar-
ities by processing similarities from R one by one in the
order of their decreasing scores. For a current similarity

H they answer two questions: (1) should H be added to
the already built part B = {A1, . . . , As} of the desired
backbone chain? and (2) if yes, after which member of
B should H be included?

Chain Basic, applicable if similarities do not overlap,
uses two global lists of similarities: (a) CurrentLocSim,
which initially contains the provided set of similarities R;
and (b) BackboneChain, which is initially empty, and at
the end contains the desired backbone chain. To perform
the search efficiently, we also support on BackboneChain
the structure of 2–3-tree (Aho et al., 1974).

When ε is small, overlaps of similarities should be
rare. Still, they do occur. Algorithm Chain that finds
the backbone chain when overlaps may be present is
a straightforward generalization of Chain Basic. Both
algorithms can be seen at ftp://ftp.ncbi.nih.gov/pub/
kondrashov/owen/extra.

EXAMPLES
Let us see how the proposed hierarchical approach aligns
sequences that are at different evolutionary distances
from each other. Complete descriptions of the aligned
sequences, alignments produced by OWEN, and align-
ments produced by PipMaker web server (Schwartz et
al., 2000; http://bio.cse.psu.edu/pipmaker) can be seen at
ftp://ftp.ncbi.nih.gov/pub/kondrashov/owen/extra.

First, we aligned a region of pufferfish Takifugu rubripes
genome (AF329945) that contains SOX9 locus to the
orthologous segment of human genome. Comparison of
these sequences performed previously using PipMaker
(Bagheri-Fam et al., 2001) revealed 5 conserved regions
upstream of SOX9, and 3 conserved regions downstream
of SOX9. OWEN detected all these regions, as well as >20
local similarities outside them. Some extra similarities
revealed by OWEN may be interesting (Figure 5a).

Second, we aligned a region of chicken Gallus gal-
lus genome (AC094011) that contains loci AKAP450

1678

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/18/12/1673/239494 by guest on 21 M
ay 2020



Hierarchical approach to aligning genomes

(3′-part), CYP51, KRIT1, and KIAA1386 (5′-part) to
its human ortholog. The backbone chain constructed
by OWEN consists of 303 similarities. The chain of
local similarities produced by PipMaker server (high
sensitivity option) included less than 200 of similarities
found by OWEN (including all exons) and very few extra
similarities. Some of similarities revealed only by OWEN
are biologically important (Figure 5b).

Finally, we aligned several orthologous regions of
murine and human genomes. In this case, chains of local
similarities found by PipMaker and OWEN are usually
very close to each other (data not reported). This is
not surprising, since these genomes are rather similar
(Jareborg et al., 1999).

DISCUSSION
We proposed a hierarchical, greedy approach to construct-
ing chains of local similarities that describe overall corre-
spondence between long, orthologous regions of moder-
ately similar genomes. This approach is simple, efficient,
and makes sense biologically.

Conceptually, resolving each essential pairwise conflict
in favor of the better similarity is the simplest option.
In contrast, the rationale behind the only reasonable
alternative, seeking the optimal as a whole chain of
similarities (Zhang et al., 1994; Schwartz et al., 2000),
is obscure. Also, determining which chain is optimal
requires assigning more or less arbitrary penalties for gaps
between similarities.

Our algorithm Fractal is very efficient, due to two
reasons. First, the run-time of creating the backbone chain
for a set of N similarities is determined by the run-time
of sorting it by scores. This can be done rapidly, in time
∼ N · log(N ) or, under some natural conditions on the
range of the scores (Aho et al., 1974), even in time ∼
N · log log(K ) (where K is the highest score), by using
priority queues (Johnson, 1982), stratified trees (van Emde
Boas, 1977), or bounded ordered dictionaries (Melhorn
and Nahler, 1990).

To find the optimal chain one has to use dynamic
programming. Run-time of currently the most effective
sparse dynamic programming (Eppstein et al., 1992)
depends on the data structure used to store the candidate
points and can be ∼ N · log(N ) (Chao et al., 1995)
or even ∼ N · log log(L), where L is the length of
the shorter sequence (Eppstein et al., 1992). However,
the multiplicative constant for sorting is smaller than for
dynamic programming, since only one tree, instead of two
is used and there is no need for extra operations (such
as processing of intersections of boundaries between the
candidates zones). In practice, both the backbone chain
and the optimal chain can be found, from a provided set of
similarities, very rapidly. OWEN (Ogurtsov et al., 2002)

supports both these options.
Second, and more importantly, there is no need to

construct all similarities when conflicts are resolved
individually. Indeed, if we compare two sequences of
length 107 (typical length of fragments of collinearity
preserved between human and mouse genomes), finding
all similarities requires a prohibitively high run-time ∼
1014 with a high constant. However, strong similarities
can be found rapidly, as long as we assume that they
contain even relatively short runs of matches. Thus, we
can start from using ‘core-based’ (BLAST-like, Altschul
et al., 1997) methods of finding local similarities, and
perform exhaustive searches for weak similarities only
within rectangles defined by strong similarities within the
original 107 × 107 dot-matrix. This speeds up comparison
of long sequences enormously. In contrast, if the optimal
chain is sought, the whole dot-matrix must be scanned
for even the weakest similarities that can potentially be
included into this chain.

Biologically, it makes sense to keep a stronger similarity
regardless of its conflicts with any number of weaker
similarities since a stronger similarity is likely to reflect
orthology (Figure 2). Of course, the backbone chain and
the optimal chain may coincide, in particular, if similar
sequences are compared.

In addition to relying exclusively on P-values, pairwise
resolution of conflicts can also, as an option, be done
manually. This makes it possible for an operator to
use some hard-to-formalize clues for deciding which
similarity to erase (and, perhaps, to store as a ‘footnote’
to the backbone chain, Ogurtsov et al., 2002. As long as
the decisions by the operator are transitive (i.e. it never
happens that conflict between A1 and A2 is resolved in
favor of A1, conflict between A2 and A3 in favor of A2,
and conflict between A1 and A3 in favor of A3), human
interventions does not lead to any modification of our
algorithms. Such intervention, which are hardly possible if
an optimal chain is sought, may be very useful in practical
work.
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