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A search for common patterns in many
sequences

M.A.Roytberg

Abstract

A new approach to search for common patterns in many
sequences is presented. The idea is that one sequence from the
set of sequences to be compared is considered as a 'basic' one
and all its similarities with other sequences are found. Multiple
similarities are then reconstructed using these data. This
approach allows one to search for similar segments which can
differ in both substitutions and deletions/insertions. These
segments can be situated at different positions in various
sequences. No regions of complete or strong similarity within
the segments are required. The other parts of the sequences
can have no similarity at all. The only requirement is that the
similar segments can be found in all the sequences (or in the
majority of them, given the common segments are present in
the basic sequence). Working time of an algorithm presented
is proportional to n-L2 when n sequences of length L are
analyzed. The algorithm proposed is implemented as programs
for the IBM-PC and IBM73 70. Its applications to the analysis
of biopolymer primary structures as well as the dependence of
the results on the choice of basic sequence are discussed.

Introduction

Various biological problems require a simultaneous comparison
of several (more than two) DNA or protein sequences. Two
main advantages of multiple sequence comparison were
recognized 20 years ago (Fitch, 1970). First, multiple
comparison reveals similarities too weak to be separated from
random ones by pairwise comparison. Second, multiple
comparison allows one to choose the best alignment even when
pairwise comparisons yield many alignments with almost the
same scores.

Two approaches to the problem of multiple sequence
comparison are possible (see Friedmann, 1988; Waterman,
1989 for review): (i) a multiple alignment of sequences as a
whole; and (ii) a search for all reasonable local similarities.

Most publications on multiple sequence comparison are
devoted to the first approach. Multiple sequence alignment is
useful when sequences under considerations (or at least a subset
of them) have long similar regions. The alignment is generally
constructed in two ways: (i) using various modifications of the
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dynamic programming method which yields an optimal multiple
alignment; and (ii) using a 'step-by-step' procedure, each step
being an alignment of two sequences only.

The first versions of the dynamic programming method
(Murata et at., 1985; Gotoh, 1986) required time proportional
to the product of the lengths of all aligned sequences and was
suitable for alignment of 3 - 5 not very long sequences. More
effective implementations of dynamic programming (Carillo and
Lipman, 1988; Altschul and Lipman, 1989; Lipman et al.,
1989) allow as many as ten sequences to be aligned in a
reasonable time.

The step-by-step procedures give more acceptable times, but
the result generally depends on the order in which the sequences
are aligned. Various implementations differ with possibility of
multiple revision of sequences, their preliminary classification
into clusters, taking into account the three-dimensional
structures, etc. See, for example, Martinez (1988) and
Waterman (1989) for review.

However, if the sequences from the set under consideration
have only short regions of local similarities (in the extreme case,
only one segment of similarity per sequence) the multiple
alignment approach has no sense and the second (segment-
based) approach should be used. Published algorithms solve
this problem effectively only when similar regions meet some
restrictions. For example, the similar segments can differ by
mismatches, but not by insertions/deletions (Bacon and
Anderson, 1986), or they should be situated at almost the same
distances from the start of the sequence (Johnson and Doolittle,
1986; Waterman, 1986; Vihinen, 1988; Vingron and Argos,
1989), or they should contain a relatively long subsegment of
perfect similarity (Sobel and Martinez, 1986).

Here I propose a new algorithm for searching for local
similarities in several sequences that is free from these
restrictions. This algorithm is also general in the sense that
segments found can be 'similar' not only in a 'textual' way with
any arbitrary scoring table, but in any other way according to
the biological problem to be solved.

Informal description of the approach

Our goal is to find common patterns, i.e. to locate the segments
that occur (possibly with some variations) in all the sequences
compared. We shall not consider in detail the problem of
aligning the segments found. These segments are, as a rule,
similar and short enough to be well aligned by one of the known
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methods. The heuristic method implemented in the MSC
program is informally described below.

Let us call a segment of a sequence 'fundamental' if each
other sequence contains at least one segment similar to it. The
idea is to select one sequence as 'basic' and to search for the
fundamental segments on it. Then the patterns common to all
the sequences are reconstructed using the fundamental segments
found on the basic sequence.

To find these segments, the basic sequence is compared
successively with all the other sequences. The result of each
comparison is a set of all the segments of a basic sequence that
are similar to any segment of the other sequence. After all these
comparisons have been made the fundamental segments of the
basic sequence are constructed by intersections of the segments
revealed by pairwise comparisons.

Thus, common segments from all n + 1 sequences are found
from a series of n pairwise comparisons of a basic sequence
with all other ('serial') sequences. 'Similarity' of two sequences
may be defined arbitrarily. The way of finding local pairwise
similarities may be considered as a replaceable part (parameter)
of the algorithm (cf. Taylor, 1987; Martinez, 1988). For
example, instead of the textual similarity adopted in the example
below, it is possible to consider two segments as similar on
a basis of their common symbol usage, internal symmetries or
three-dimensional structures.

Example 1

Let us consider the basic sequence

B = 'AGTATACATTCGAAAA'

and a series of two sequences

S(l) = 'GTTCCGAACTATAC

and

5(2) = 'GGTATAGATTGGAAA'

Here only exactly coinciding segments of lengths no less than
4 are considered as 'similar'. Then £ and 5(1) have one
similarity.

£[3,7] = TATAC < = > 5(l)[10,14] = 'TATAC

where V[x,y] is a segment of a sequence V from the xth to the
yth symbol inclusively. fl and 5(2) have two similarities:

B[2,6] = 'GTATA' < = > 5(2)[2,6] = 'GTATA'

and

£[12,15] = 'GAAA' < = > 5(2)[12,15] = 'GAAA'

Therefore a sequence B contains one fundamental segment,
£[3,6[ = 'TATA'. The corresponding segments in the serial
sequences are S(l)[ 10,13] = TATA'and 5(2)[3,6] = 'TATA'
respectively.

If local similarities are sought by an algorithm allowing one

difference (mismatch, insertion or deletion), then B contains
one more fundamental segment, B[9,14] = 'TTGGAA'. This
segment corresponds to the similarities

£[9,14] = 'TTCGAA' < = > 5(1)[2,8] = 'TTCCGAA'

and

£[9,14] = 'TTCGAA' < = > 5(2)[9,14] = 'TTGGAA'

End of example.
This approach allows an effective multiple similarity search.

If the search for all the local similarities in two sequences
requires the time T, the whole time of comparison of the basic
sequence with a series of n sequences is porportional to n-T
and the intersections necessary to obtain the final result can be
done much faster. The memory required depends mainly on
the algorithm of comparison of two sequences (see below).

An 'asymmetry' of the approach originating from the choice
of a basic sequence does not seem to be a severe limitation.
It is possible to choose various sequences as basic for the same
set of sequences and to compare the results obtained. Sometimes
the asymmetry is natural, e.g. when a new sequence is
compared with a series of known sequences. We shall also
consider a more 'symmetrical' version of the approach (see
Problem 2 below).

Another modification of this approach allows one to find
'subfundamentaT segments, i.e. segments that are similar in
some but not all serial sequences.

Strict formulation of problems

A pairwise local similarity may be defined in many ways.
Therefore, there are many possible formalizations and
algorithms for the search for all the reasonable local similarities
in two sequences (Altschul and Ericson, 1986; Sellers, 1984;
Hall and Myers, 1988; Waterman, 1989). Any algorithm may
be used for our goal. The algorithm adopted here is briefly
described in the Implementation section.

By a local similarity of two sequences W and U we mean
a pair {d,d') of segment d on sequence W and segment d' on
sequence U. If (d,d') is a local similarity, we say that d is an
analog of d' and vice versa. Some algorithms can also find for
every pair of similar segments an alignment and other
characteristics (likelihood weight, similarity score, etc.)

Let us choose the basic sequence £, the series of n 'serial'
sequence 5(1) S(n), the algorithm H, finding local
similarities in two sequences, and a value D^, which is the
minimum length of similar fragments.

Segment F of the sequence £ is called fundamental with
respect of 5(1), . . . , S(n), algorithm H and value Dmm if

(i) for each y e (1, . . . ,n), F is apart of a segment d having
an analog in 5(/);

(ii) segment F is 'maximal', i.e. is not contained entirely in
any other segment of £ satisfying to requirement (i);

(iii) the length of F is not smaller than Dmin.
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Thus, for every fundamental segment F of the basic sequence
B there is a corresponding similar segment in each serial
sequence. The main problem here is as follows.

Problem 1

(i) To find all fundamental segments of the basic sequence B
with respect to sequences S(l), . . . , S(n) with a given search
algorithm H and value of Dmin.

(ii) To find all analogs of each fundamental segment in the
serial sequences S(l), . . . , 5(n).

Problem l(ii) should be reformulated if local similarities are
sought by an algorithm that does not align similar segments (an
algorithm by Zharkikh and Rzhetskiy, 1989, for example). In
this case it is unclear what should be meant by an analog of
the fundamental segment. A suitable modification is the problem
of finding for each fundamental segment Fall local similarities
(£,£') such that F lies inside E or overlaps this by a length
not smaller than Dmin.

Note that the weight of similarity of the fundamental segment
F and its analog F may be smaller than the initial similarity
(d,d') weight. We believe it is interesting to take into acocunt
such weak subsimilarities of strong similarities, which is seen
in the statement of Problem 1. But in some situations it is more
natural to neglect them in further analysis of the fundamental
fragments found (see Implementation).

The relation of local similarity is not transitive: two segments
from two different serial sequences that are similar to a given
fundamental segment cannot be similar between themselves (see
example below). Therefore, the following problem is of interest.

Problem 2

To find all segment systems \d{Q), . . . ,d(n)\ such that
(i) d(0) is a fundamental segment of the basic sequence;
(ii) d(j) is a analog of d(0) in the yth serial sequence

( / e [ l , • • • . "));
(iii) for all ij e 11, . . . ,n] segments d(i) and d(j) are similar

according to the adopted definition of a local similarity.
This problem resembles the problem of searching for similar

segments if the sequences compared are considered equally
right, i.e. none of them is picked out.

Example 2

Let us consider again the basic sequence

B = 'AGTATACATTCGAAAA'

and the series of two sequences:

5(1) = 'GTTCCGAACTATAC
and

5(2) = 'GGTATAGATTGGAAA'

Let us treat as similar those segments that differ by no more
than one mutation (mismatch, insertion or deletion); here
Anin = 4. As we noted in the previous section, the basic

sequence possesses two fundamental segments
fl[3,6] = 5(l)[10,13] = S(2)[3,6] = 'TATA' and
£[9,14] = 'TTCGAA', which is similar to
5(1)[2,8] = TTCCGAA'and5(2)[9,14] = TTGGAA'. Here
the solution of Problem 2 is only the triplet

<B[3,6], ], S(2)[3,6]>

while the other triplet is not a solution, because 5(1)[2,8] =
'TTCCGAA' differs from 5(2)[9,14] = 'TTGGAA' by more
than one mutation. End of example.

In many situations it is important to single out those segments
that have similarity with some of the sequences compared, but
not with all of them (cf., for instance, Martinez, 1988). This
situation leads to the Problem 3 below, but first some
definitions.

Segment E of the basic sequence B is subfundamental with
respect to the series 5(1), . . . , 5(n) if £ is a fundamental
segment with respect to a subseries V of 5(1), . . . , S(n), V
contains not less than n —/sequences (/"is a parameter).

Problem 3

(i) To find all subfundamental segments of the basic sequence
B with respect to the series 5(1), . . . , S{n) for a given search
algorithm H and values of parameters D^ and /.

(ii) To find all analogs of these subfundamental segments in
the serial sequences 5(1), . . . , S(n).

Surely, in this case the results depend strongly on the choice
of basic sequence. This is a weak point of the approach
presented. A possible way to overcome it is to try each sequence
as a basic one (of course, this will take more time). Note that
if all the sequences contain fragments that are very similar to
one another, then a choice of the basic sequence is not crucial.

These three problems are formalizations of the approach
outlined in the previous sections. Their development may consist
in applying additional restrictions on the class of fundamental
segments we are analyzing. These restrictions may be caused
by mutual interpositions of similar segments on the sequences
compared, their space structures, physical and chemical
properties, etc.

Algorithms

.Let B be the basic sequence with length L; S\, . . . , Sn be the
series of sequences with the lengths L\, . . . , L,. Let
LOC_SIM be the algorithm used for search of local similarities
in two sequences, a form of which is shown in Figure 1.

We begin with a detailed description of the main ALG1A
algorithm for solving Problem l(i). The algorithm is presented
in Figure 2; its subroutines SETSYS1 and FUND are shown
in Figures 3 and 4 respectively. The algorithm FUND is the
main part of the algorithm ALG1A. This algorithm computes
new value of SYS from its preceding value and the value of
SYS1 already generated. To be more accurate, FUND generates
all such segments F, that
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Algorithm LOC_SIM (VI, V2: sequence; . . . );
begin

INIT_LOC_SIM;
while (processing of VI and V2 is not completed) do

GET_NEXT_SIM (El, E2: segment; . . .)
end_ while;

end.

Fig. 1. A common form of an algorithm for searching for local similarities
in two sequences. INTT LOC SIM is an initialization subroutine;
GET_NEXT_SIM generates a current pair of similar segments, El of VI
and E2 of V2. The type 'segment' represents a sequence segment and is a record
with two integer components, FIRST and LAST, indicating the ends of the
segment. In all alogrithmic texts does represent additional parameters. The
additional output data of the GET_NEXT_SIM program, for example, may
be an alignment of El and E2.

Algorithm ALGIA;
begin

INIT_1A;
for NSEQ: = 1 to n do begin

read next serial sequence;
•Construct SYS1 (see Figure III)'
SETSYS 1 (SYS1, NYS1);

if (NYSYI-0) then
NSYS: - 0 ;
exit

end_if;

'no similarity between basic"
'and current serial sequence'

'Assign a new value to SYS'
if (NSEQ-1) then 'processing of 1-st serial"

SYS:-SYS I; 'sequence'
NSYS: = NSYS 1:

else
FUNCHSYS. NSYS. SYSI, NSYS1) 'see Figure IV"

encLJf;
if (NSYS=0) then exit;

end for;
end.

Fig. 2. Algorithm ALGI. INIT IA is an initialization subroutine reading the
basic sequence and preprocessing it according to the INrT_LOC_SIM
subroutine of the LOC__SIM algorithm (see Figure I). Here n is a number
of serial sequences. The array SYSI of length NSYS I contains all segments
of the basic sequence B that have a similar segment in a current serial sequence
Sj and are not a part of any other such segment. Array SYS of length NSYS
contains all the segments of the sequence B fundamental with respect to current
subseries \S{ Sj\. The segments in the arrays are ordered according to
their starting points.

(i) F = F, fl F2, where F, is an element of SYSI and F2

is an element of the preceding value of SYS;
(ii) F is not shorter than D^;
(iii) F lies in no other segment satisfying previous require-

ments.
The execution time and memory needed for algorithm FUND

are proportional to a number of elements in the systems
intersected and are in our case proportional to the length of the
basic sequence.

The solutions of Problems l(ii), 2 and 3 are based on the
algorithm ALGIA. To avoid a lot of technical details, we will
only sketch these solutions.

Problems l(ii) and 2 are each solved in three stages. The first
stage is computation of an array SYS of fundamental segments,

Algorithm SETSYS I (SYSI.NSYS 1);
begin

'Initialisation'
INIT_LOC_SIM;
for j : = I toLdoMEND[j]:=0;

"Computing of MEND'
"(the loop below is a modified loop from LOC_SIM)'

while (processing of sequence B and S is not completed) do
GET_NEXT_SYM (El, E2, . . .);

b: = El.FIRST; e:-El.LAST;
if (e - b + 1 2: Dmin) & (MEND[b] < e) then

MEND[b]:=e;
end_if;

end_while;

'Computing of SYSI and NSYS I'
NSYS1:=O;
z:=0;
for j: = l to M do

if (MENDtj] > z) then
z:=MEND[j];
NSYS1:-NSYS1 + 1;
SYSl[NSYSl].FIRST:=j;
SYSl[NSYSI].LAST:=z:

encLJf
end_for;

end.

Fig. 3. Algorithm SETSYS 1. The algorithm computes a value of an array SYSI
and its length NSYS 1. Elements of SYS 1 are segments represented with records
having two integer components. FIRST and LAST. INIT LOC SIM and
GET_NEXT_SIM are subroutines of the LOC_SIM algorithm (see Figure
1). B and S are arrays containing basic and current serial sequences respectively.
El and E2 are similar segments (El and B and E2 from S) generated by the
GET_NEXT_SIM subroutine. An element MEND(/] of an auxilliary array
MEND contains the largest number r such that the segment [i,r] of the basic
sequence has a similar segment in S (according to the LOC SIM algorithm)
and 0 if there are no such segments.

as in Problem l(i). In addition, array SYS is used to create
two auxiliary arrays FIRSTSEG and LASTSEG of length L.
FIRSTSEG [x] is the least number of a segment [a,b] from
system SYS such that b - x + 1 2: D^, and LASTSEGLy]
is the largest number of a segment [a,b] from system SYS such
that v - a + 1 2: Dmin.

It is evident that if [x,y] is a segment of the basic sequence,
it has non-empty intersection of a length not smaller than £„,„,
with only those fundamental segments that are numbered from
FIRSTSEGW to LASTSEGfj] in SYS. It can easily be seen
that the time taken for computation of arrays FIRSTSEG and
LASTSEG is of the order of L.

The second stage consists, like the first, in computation of
the local similarities between the basic sequence B and each
sequence of the series Sh . . . , Sn. For each similarity (£,£')
found, we search for fundamental segments that have an
intersection with £ of a length not smaller than Dmin. If the set
of such fundamental segments is non-empty, the local similarity
is saved and is referred to from the appropriate fundamental
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Algorithm FUND (SYS. NSYS);
begin

'Initialisation'
K l : - ; K2: = l; 'current segments of SYS1 and SYS2'
NSYS:-0: 'current length of SYS'

while (Kl £ NSYS1 & K2 s NSYS2) do

'Determination of an active segment"
'of next good pair'
if (SYS1[K1].FIRST S SYS2[K2].FIRST)

then Act: = l; Pass:-2;
else Act:»2; Pass: = l;

end_if;

'Caculation of a segment of SYSPass that'
'complete SYSAct[KAct] to a good pair'
KPass: =the maximal NZ for which

SYSPass[NZ],FIRST <: SYSAct[KAct].FIRST;
'Now SYSActfKAct] and SYSPass[KPass] form'
'a good pair. Is their intersection long enough?'
b: -SYSActfKAct]. FIRST;
e: = min(SYSl[Kl].LAST, SYS 1[K2].LAST)
if ( e - b + 1 £ Dmin) then

'Store the next element of SYS"
NSYS:°NSYS+1;
SYS[NSYS].FIRST:«b; SYS[NSYS].LAST:=e;

end if

'increase values of Kl and/or K2;'
'an element of a good pair having smaller end'
'cannot belong to any following good pair'
if (SYSI[KI].LAST-e) then K1:=KI + I;
if (SYS2[K2].LAST=e) then K2.=K2 + 1;

end while

end.

Fig. 4. Algorithm FUND. The FUND algorithm computes a new value of the
array SYS from values of an auxiliary array SYS1 (see SETSYS1, Figure 3)
and array SYS2 containing the previous value of SYS. NSYS, NSYS1, NSYS2
are the numbers of elements in corresponding arrays. Elements of the arrays
are segments (see Figure 3) ordered according to their beginnings. Therefore,
they are also ordered according to their ends (otherwise some segment would
be part of another one, which contradicts the definition of fundamental segments).
The algorithm looks over arrays SYS I and SYS2 in a 'parallel' way to find
'good' pairs of segments, i.e. pairs of such segments SYS1[K] and SYS2[K2]
whose intersection does not lie in an intersection of any other pair of segments
from SYS I and SYS2. The element of a good pair with a larger beginning
is called active (if the beginnings are equal we call the segment of SYS 1 active
for convenience). Here we use the following notation. The variable Act contains
the number (1 or 2) of the array that includes the active segment of the current
good pair; the variable Pass contains a number of the other (passive) array,
so that Pass = 3 - Act. Thus SYSAct identifies the array SYS1 if Act = 1
and the array SYS2 if Act = 2. Identifiers SYSPass. KAct, KPass, etc., are
used analogously. For example, KPass means Kl if the array SYS2 is active,
and K2 otherwise.

segments. If desired, all weights of subsimilarities of funda-
mental segments are computed and subsimilarities of low weight
are rejected.

In the third stage the local similarities found are printed
(Problem l(ii)) or further analyzed (Problem 2).

It remains to consider Problem 3. We will only describe the
algorithm for the solution of Problem 3(i); Problem 3(ii) is
solved on the basis of this, just as Problem l(ii) is solved using
Problem l(i).

Identifier

1.
2.

'3.
4.
5.
6.
7.
8.
9.

10.

HSACTH
HSENKE
HSIL05
HSTNFA
HSIIFI56
HSGMCSFG
HSVWF123
HSEGFR1
HSBSF2
HSINSRB

Start of the
Coding sequence

681
950

1263
615

1157
620
836
839

1123
1254

Fig. 5. The following human genet were analyzed: common precursor of
corticotropin and |3-lipotropin (identifier in 20th release of EMBL database,
HSACTH; accession number, V01510), preproenkephalin (HSENKE; X00187),
interieuldn-2 (HSIL05; X00695, X00200, X00201, X00202), a-tumor necrosis
factor (HSTNFA; X02910, X02159), interferon-inducible gene IFI-56K
(HSIIFI56; X06559, Y00986), granulocyte-macrophage colony stimulating
factor (HSGMCSFG; X0302I), von Willebrand factor (HSVWF123; X06828),
epidermal growth factor receptor (HSEGFR1; X06370), hepatocyte stimulating
factor BSF-2/IL6 (HSBSF2; Y0008I), insulin receptor (HSINSRB; J03466).

The algorithm, ALG3A, for solving Problem 3(i) is
structurally similar to ALG1A (see Figure 2). Let / be a
maximal number of sequences in which a subfundamental
segment can have no similarities. The difference between these
two algorithms is that ALG1A deals with the array of segments
SYS and ALG3A deals with / + 1 analogous arrays
SYS(O), . . . , SYS(/). When r first sequences of a series are
processed, the array SYS(/) contains all segments that have no
similarities exactly in j sequences (J = 0, . . . , f) or r
sequences considered.

Implementation

The algorithms described above were implemented in the
program MuSCo (Multiple Sequence Comparison). The program
exists in two versions. The first is implemented in the
FORTRAN-77 language for IBM/370 computers (operating
system VM) and is a part of the SAMSON package for analyses
of biosequences (Vemoslov et al., 1989). The second version
is written in C for IBM-PCs.

Both DNA and protein sequences can be compared. The
number of sequences in a set is up to 30 and the maximum
sequence length is 1000.

The program has five options. The first is to compare a basic
sequence with every serial sequence independently. This option
is useful to choose the appropriate values of parameters. The
four other options are to solve Problems l(i), l(ii), 3(i), 3(ii)
respectively. The data obtained when these problems are solv-
ed can be further analyzed to solve Problem 2 or to select the
multiple similarities that meet some conditions.

To find local similarities in two sequences, the following
heuristic method is implemented. First, the program finds all
the 'primary blocks', i.e. pairs of coinciding segments of the
sequences. The length of the segments cannot be less than a
specified threshold. The program then links the blocks into
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Identifer
HSTNFA
HSENKE
HSGMCSFO
HSEGFR1
HSINSRB

From
-237
-443
-240
-344
-437

To
-219
-422
-217
-328
-418

Location Alignment
GGA G CAGGGAGGA_TG GGGA
GG g G c c CAGGGAGGA G g c GGGA
aGAc iGc cCAGGGAGGgcT G G a G A
GGA a AGGG_GG A_a G GGGA
GG c a C AGGG AGG c G GGGA
GGa g CAGGGAGGa NG GGGA

Fig. 6. A multiple similarity between 5 of 10 considered sequences. The top sequence was selected as basic. The columns 'From' and 'To' contain distances
from the transcription initiation site to the ends of the segment found. The 'Location' column indicates the place of the segment on the initial sequence. Every
position in this column denotes 50 nucleotides. The last column shows the multiple alignment of the segments. Capital letters indicate that the majority of the
five sequences contain the same letter in this position. The bottom line in the 'Alignment' column contains a 'consensus' site. A capital letter in this line means
that it presents at least in three-quarters of the rows. A lower-case letter indicates a simple majority only.

Identifier From To Location Alignment
T C C C T C C T C C T C_C C
T C C C T C C c c T C C T C_C C
a C C g a C C C C T C_C C
g CCCTCC TC_TC g CC
TCCC_CC g CCTC_CC
g CCCTC T C_TC_CC
tCCCTCC TCCTC CC

Fig. 7. A multiple similarity between 6 of 10 considered sequences. The notations are explained in Figure 6.

HSEGFR1
HSACTH
HSENKE
HSTNFA
HSGMCSFG
HSINSRB

- 42
-507
-141
- 48
- 73
-254

- 29
-492
-129
- 35
- 61
-243

'chains' and marks those chains that have a weight more than
another threshold and meet some 'maximality' conditions (cf.
Sellers, 1984; Goad and Kanehisa, 1982). A weight of a chain
is defined as follows.

Some 'weight' W(R) > 0 is assigned to each block R and
a linkage penalty P(R\, Rj) is assigned to each pair of blocks
R\ and R2 that can be linked due to their locations on the
sequences compared. The linkage penalty is analogous to the
gap penalty in the traditional definitions of an alignment weight
(Roytberg, 1984; Waterman, 1984; Miller and Myers, 1988).
The weight of a chain C = \R\, . . . Rk] is a difference
between the sum of weights of blocks W(Rj) and the sum of
the linkage penalties P(Rh Rj + i), where i = 1, . . . , Jk.

This method of pairwise comparison is very fast, but does
not guarantee finding an 'optimal' local similarity. A similar
technique was propsoed by Sobel and Martinez (1986) to
construct directly a multiple alignment of many sequences.

When applied to a pair of sequences this method can detect
short, even single-element primary blocks, and therefore can
find weak similarities. If one searches for blocks common to
all n sequences considered (as in Sobel and Martinez, 1986),
their number increases proportionally to L" when the average
sequence length L increases. Therefore, the minimal block
length cannot be too small.

The weight of the primary block in the MuSCo program may
be defined as sum of match weights of its symbols or as a
function (linear, or exponential) of the block's length. A linkage
penalty usually is a linear or logarithmic function on the distance
between the blocks, but more complicated ways of defining it
are also possible.

Every detected set of the similar segments consists of a
(fundamental) segment of the basic sequence and, similar to

it, segments of the serial sequences. These segments are aligned
as follows. First, we align the segments according to their pair-
wise alignments with the segment of the basic sequence: the
positions corresponding to the same position of the fundamental
segment are placed in the same column. Then we modify the
obtained multiple alignment with some local transformations
to increase the number of multiple matches and to decrease the
number of gaps (the details are discussed separately).

The total memory used for multiple comparison depends
mainly on the maximum possible number of primary blocks
when two sequences are compared. In the IBM/370 version this
number is 25 000, therefore the memory used is — 1 Mbyte
(including 640K for data). In the PC version of the program
the maximum possible number of primary blocks is determined
dynamically according to available memory and can be up to
5000 for a 640K RAM computer. Note that the maximum
number of primary blocks determines the minimum possible
length of a block; 25 000 primary blocks allows, as a rule, the
use of one-symbol blocks for comparison of DNA sequences
of length 300 or protein sequences of length 700.

The execution time also depends on the number of primary
blocks generated and some other characteristics (maximum
possible distance between blocks, for example). Solving
Problem l(i) on the EBM/370 computer for the basic sequence
of length 100 and nine serial DNA sequences of the same length
(all are parts of the sequences shown in Figure 5) takes -100 s
when minimum length of primary block is 1 and maximum
distance between linking blocks is 3, and 12 s when minimum
length of two primary block is 2. If the parameters of
comparison are fixed and all serial sequences have the same
lengths, the execution time grows approximately proportionally
to a product of the lengths of the basic and serial sequences.
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Discussion

The principal advantage of the method of searching for multiple
local similarities proposed here over methods published before
is that it can find 'weak similarities', i.e. similar fragments that
(i) can contain no regions of exact match, (ii) can differ with
deletions/insertions as well as with replacements, and (iii) can
be situated at arbitrary positions on the sequences compared.
The possibility of using various concepts of pairwise similarity
is also important. The following is a brief review of other
methods.

The search for short similar segments in the analyzed
sequences is a preliminary step in some multiple alignment
algorithms (Waterman et al., 1984; Bains, 1986; Johnson and
Doolittle, 1986; Waterman, 1986; Vingron and Argos, 1989).
For our goal, however, the methods used at this step are of
independent interest. Their common feature is that they find
similar segments only if they are almost equidistant from the
sequences' beginnings. This is reasonable for the purpose of
construction of a multiple alignment. In the case of a local
similarity search, however, usually there are no reasons to
assume that similar segments are situated at similar positions.

Several papers consider the problem of searching for multiple
local similarities directly (Queen et al., 1982; Bacon and
Anderson, 1986; Krishnan et al., 1986; Sobel and Martinez,
1986; Taylor, 1986; Vihinen, 1988).

The method of Queen et al. (1982) is based on a preliminary
search for exact matches of all the sequences, which may be
done very quickly using special tables (Aho etai, 1974).
Therefore, if the set of even very similar segments contains
no absolutely conserved positions, this method cannot find it.
This appproach also requires rather extended exact matches,
otherwise their number and the computation time are too large.

The method of Sobel and Martinez (1986), which searches
for exact matches and then links them into chains, has already
been discussed in the Implementation section. In a recent paper
Martinez (1988) has proposed the generalization of the method
to produce a multiple alignment.

The method of Bacon and Anderson (1986) processes
sequences successively. The result for the r first sequences is
M sets of segments (one segment from each sequence) with the
largest similarity weights (M is a parameter of the algorithm).
Unfortunately, this attractive method does not allow
insertions/deletions to be taken into account.

A method of Taylor (1986) is designed for the comparison
of proteins. It starts from 'templates' created using the data on
a structure, and a function of separate segments of a part of
the compared proteins. Templates are then refined in the course
of analysis of the other proteins.

Krishnan et al. (1986) and Vihinen (1988) have sought for
similar segments using overlapped similarity matrices (dot-
matrices). The weight of a dot in the resulting matrix is a sum
of the weights of the corresponding points in the initial matrices.

Therefore, the points in a resulting matrix with weights
exceeding some threshold mark the local similarities among all
(or the majority) of sequences compared.

Although very similar, these two dot-matrix approaches have
some differences. Krishnan et al. generate dot-matrices for all
possible pairs of sequences (when these are long, their segments
of fixed lengths are compared). Vihinen's method is designed
to compare proteins, especially their secondary structures,
though it may be used to compare any sequences. As in our
method, it picks up a basic sequence, whose dot matrix is
overlapped with that of every other sequence. These are initially
aligned with the basic sequence to take into account their
possible shifts with respect to the basic sequence.

An important difference of these methods from ours is that
they use overlapped dot-matrices, while our method uses
overlapped projections of similar segments onto the basic
sequence. Therefore, dot-matrix methods can find only the
segments of the basic sequence that have similar segments in
the other sequences at approximately the same positions with
respect to the starts of the compared sequences (Krishnan et al.,
1986) or 'reference points' found during preliminary two-
sequence alignments (Vihinen, 1988).

To summarize, note that all thesse methods cannot search
for 'weak similarities'. Therefore, the advantages of our method
are particularly important in searching for short patterns that
may differ at various sequences with both mismatches and
insertions/deletions and whose positions at various sequences
may differ significantly.

The main peculiarity of the method Gike all step-by-step
methods) is its 'asymmetry', i.e. the dependence of the results
on a choice of the basic sequence. To illustrate this let us
consider again Example 1, where the similarity

BJ9.14I - TTCGAA'<->S(I)(2.8) - TTCCGAA'< - >S(2)|9,I4] = TTGGAA'

is shown. It was found with basic sequence B and a threshold
for a pairwise comparison equal to one (i.e. only one
difference—mismatch or deletion—is allowed). The distance
between 5(1)[2,8] = 'TTCCGAA' and 5(2)[9,14] =
'TTGGAA' is 2 (see Example 2), therefore the similarity would
not be found if the sequence 5(1) or 5(2) is considered as basic.
But the asymmetry is not a fatal drawback. For instance, in
the previous situation we can overcome it by increasing the
threshold to 2. Note that this 'asymmetry' of the method may
reflect the asymmetry between an ancestral sequence and the
successor ones. Some other problems associated with a choice
of the basic sequence have already been discussed in the
previous sections.

To illustrate the abilities of our method we present data on
a local similarities search in 5'-regulatory regions of ten protein-
coding loci of Homo sapiens (Figure 5). Six hundred nucleotides
preceding a transcription initiation site were considered at each
locus. No obvious common biological functions and no
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significant pairwise similarities were found for all these
sequences, so each sequence was regarded as basic. The
minimum primary block length was 2 and the maximum
distance between blocks was 3.

Data in Figures 6 and 7 show multiple alignments for the
best multiple similarities found in this set of sequences. Of
course, we do not claim that these similarities reflect any
common function, but an analogous search in a series of random
sequences did not reveal similarities of comparable quality.

Unfortunately, we cannot estimate precisely the statistical
significance of similarities that our method yields. This is a
common problem with all the methods that allow gaps. A
routine way to overcome this difficulty is either to use very
crude estimates of significance or to do the same comparison
with several series of 'random' (having the same frequencies
of symbols, or, preferably, of pairs of adjacent symbols)
sequences of the same lengths.

To estimate the significance of similarities presented in
Figures 6 and 7 these ideas were combined. First, an
approximate value of the probability that a random site of given
length has a similarity in a random sequence was obtained by
Monte Carlo simulation (in the case of the similarity shown
in Figure 6, the length of the site is 20, the length of the
sequence is 600 and the probability is 0.0022). Then an estimate
is made of the probability of multiple similarity from the
probability, obtained from the Mone Carlo modeling (in the
case above the probability is less than 0.001).
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