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DNA Segmentation Through the Bayesian Approach

V.E. RAMENSKY,1 V.JU. MAKEEV,1 M.A. ROYTBERG,2 and V.G. TUMANYAN1

ABSTRACT

We present a new approach to DNA segmentation into compositionally homogeneous blocks.
The Bayesian estimator, which is applicable for both short and long segments, is used to
obtain the measure of homogeneity. An exact optimal segmentation is found via the dynamic
programming technique. After completion of the segmentation procedure, the sequence com-
position on different scales can be analyzed with � ltration of boundaries via the partition
function approach.
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1. INTRODUCTION: COMPOSITIONAL SEGMENTATION OF
BIOLOGICAL SEQUENCES

Nucleotide sequences typically display correlations in nucleotide compositions, which are found
both on small scales (Fickett, 1982; Frank and Makeev, 1997; Kypr and Mrazek, 1986; Mrazek and

Kypr, 1994; Trifonov and Sussman, 1980; see also the literature on Markov chains, e.g., Guigo and
Fickett, 1995) and on large scales (Sueoka, 1959; Bains, 1993; Bernardi, 1989; Bernardi, 1995; Bernardi
et al., 1985; Chechetkin and Lobzin, 1998; D’Onofrio et al., 1991; Karlin and Brendel, 1993; Kypr and
Mrazek, 1995; Kypr et al., 1989; Li, 1994; Li, 1997; Ossadnik et al., 1994; Peng et al., 1992; Trifonov and
Sussman, 1980; Tsonis et al., 1991). Several biological issues are believed to be related to these correlations.
Among other examples, one can mention the presumption of Bernardi et al. that many genomes of higher
eukaryotes contain long regions of quasi-uniform composition, the isochores (Bernardi, 1989; Bernardi,
1995; D’Onofrio et al., 1991), the compositional difference between exons and introns (Guigo and Fickett,
1995; Herzel and Grosse, 1997), simple repeats (e.g., Li and Kaneko, 1992), tracts in splicing sites (Gelfand,
1992; Gelfand, 1995), and DNA sites of factor binding (Gelfand and Koonin, 1997).

The local nucleotide composition is taken into account in many algorithms developed for the search of
different patterns in DNA sequences (Krogh et al., 1994(a); Krogh et al., 1994(b); Reese et al., 1997).
Algorithms of this kind usually employ a � xed window, the length of which can affect the results. The
preliminary compositional segmentation, which breaks a DNA sequence into homogeneous subsequences
(blocks or segments), can therefore improve the perfomance of the pattern search.

Recently Bernaola-Galvan et. al. (1996) (see also Roman-Roldan et al. (1998)) have put forward a
segmentation algorithm, where they used an approach based on the Jensen-Shannon divergence measure
employed in various image-processing applications.The sequence is divided into two adjacent subsequences
if the compositionsof the resulting segments differ at the given level of statistical con� dence. This procedure
is repeated for each of the two resulting subsequences until the whole sequence becomes segmented
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into domains differing from each other in their composition. The segments so de� ned are neighborhood-
dependent.

This technique, although conceptually simple and computationally ef� cient, has two basic disadvantages.
First, regardless of the divergence measure chosen, the hierarchical segmentation procedure does not ensure
that the true optimal segmentation will be attained. Indeed, the � rst boundary, which divides the sequence
into two subsequences, and actually re� ects the compositions averaged over very large distance, is retained
for the whole subsequent procedure, even if it fails to be appropriate at the later stages of the segmentation
process when it separates smaller blocks.

Second, this procedure requires a criterion for termination of cutting. To this end, Bernaola-Galvan et al.
(1996) use statistical inference. The segmentation thus becomes dependent on the given threshold value
indicating that the compositions of subsequences are signi� cantly different. With the point estimator of
the frequency of each letter used by Bernaola-Galvan et al. (1996), it is necessary that the segments are
long enough to secure reliable statistics. This critical block length depends on the composition of the
segments. This additional requirements may create dif� culties in comparing the resulting segmentation
with the functional structure of the sequence.

We believe that the optimal segmentation algorithm should be free of both shortcomings, with all possible
con� gurations of boundaries taken into account and the short segments considered on an equal basis with
the long ones.

Moreover, the very de� nition of homogeneous segments depends on the scoring system. Even such a
simple sequence as AAAACACACCCC brings about the question of what segmentation, “AAAA-CACA-CCCC ”
or “AAAACA-CACCCC ,” is better. Different scoring systems can yield different answers.

Finally, the necessity to test all possible boundary con� gurations is a serious computational problem,
since the number of possible segmentations is exponentially large (if a boundary is to be set between any
two neighboring letters, this quantity equals 2N ¡ 1, where N is the sequence length). The computational
time may be reduced with scores of a special type, for which dynamic programming or another similar
technique may be employed.

In the context described, the Bayesian approach turns out to be highly expedient. For the problem
discussed, it is intuitively very clear. All the integrals involved in constructing the Bayesian estimators
can be taken analytically, which is a rare case in the practical application of the Bayesian statistics. The
Bayesian estimator does not degenerate for short blocks, and one can easily incorporate it into the dynamic
programming scheme.

In the framework of general Bayesian inference, this problem relates to the multiple-changepoint iden-
ti� cation (Chernoff and Zacks, 1964; Smith, 1975; Booth and Smith, 1982). The general theory, with
examples, is presented by Stephens (1994). Segmentations of sequences with the Bayesian approach was
recently discussed by Liu and Lawrence (1999) (see also Lawrence (1997)). Their paper can also serve as
an excellent introduction to the Bayesian approach in bioinformatics. Basically, their technique is free of
the disadvantages of the approach of Ramon-Roldan et al. and begins with segmentation of the sequence
into a � xed number of blocks, with subsequent calculation of the boundary probability distribution using
a sampling procedure (see also Stephens (1994)). We discuss the differences of this algorithm with ours
in detail in Section 6. The only remark to be made in advance is that we use sets of possible boundaries
rather than probability distributions for borders and do not use sampling.

Our algorithm consists of the following two stages: (i) given the sequence, the possible con� gurations of
boundaries between blocks, i.e., the segmentations, are tested. For each segmentation a likelihood function
is calculated. This function is maximized over all possible segmentations via dynamic programming,
yielding the optimal segmentation. As a rule, the optimal segments are relatively short. Therefore, to
obtain segmentation with larger segment lengths, some neighboring blocks of similar composition should
be merged, that is, some boundaries should be � ltered out.

For � ltration (ii), we calculate the probability of every optimal boundary. To this end, we use the partition
function of the whole sequence, as well as the partition functions of the subsequences to the right and to
the left of the boundary under evaluation. After � ltration, only boundaries with probabilities higher than a
given threshold are retained, providing the (suboptimal) segmentation with longer segments.

In this paper we also discuss the practical aspects, such as the choice of the prior, the ef� cient algo-
rithm, the examples of segmentation of biological sequences, and the possible future applications of the
method.
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2. BAYESIAN SEGMENTATION. GENERAL CONCEPT AND
CONSTRUCTION OF ESTIMATORS

2.1. The problem

Consider a symbolic sequence written in an alphabet « containing L letters. We are going to approximate
this sequence with a probabilistic model. The sequence is considered as a series of statistically independent
and compositionally homogeneous blocks of arbitrary length. These blocks are of multinomial random
nature. For each block, we shall refer to the observed numbers of each letter in it as to the counts
n 5 (n1, . . . nL ). These counts serve as arguments of a score function that re� ects the homogeneity of
each block. We de� ne a segmentation as a set of boundaries separating these blocks and use block counts
to estimate their compositions. Since the blocks are assumed to be statistically independent, the score for
the entire segmented sequence is a product of the scores for individual blocks.

With the score function at hand, the sequence is studied with two complementary techniques, whose
combination yields reliable results. The result of applying the � rst technique is a single optimal segmen-
tation with the maximal score; the second technique consists in calculating the probabilities of boundaries
with the help of the partition function of all possible segmentations.

2.2. Optimal segmentation

To obtain the optimal segmentation, we employ a dynamic programming algorithm (Finkelstein and
Roytberg, 1993), which computes it for the time proportional to the squared sequence length (see Section
4). However, several various partitions often yield the same score (e.g., AACAC and A-ACAC for the marginal
likelihood score; see Section 2.7) and our algorithm provides only one solution out of the many having
identical scores.

Moreover, some of the boundaries forming the optimal segmentation are very sensitive to minor changes
in the sequence. Although the scores of the optimal segmentation of the changed sequences are close to
the score of the unperturbed one, the segmentation patterns can be rather different.

The second technique can take into account the suboptimal solutions.

Boundary probabilities. Partition function. Determine the partition function of the set of segmentations
of a sequence of length N in a standard way (Finkelstein and Roytberg, 1993) by summing the probabilities
of all possible partitions:

Z (N ) 5
X

q1

X

qN ¡ 1

¦ (q1, . . . qN ¡ 1) (1)

where the indicator qk equals 1 if there is a boundary located after the letter k in the sequence, and 0
otherwise; the overall q 5 (q1, . . . , qN ) determines a segmentation which has the probability ¦ (q). The
partition function can be easily computed via the dynamic programming algorithm (see 4.2 below).

To calculate the probability of the boundary located after the letter k, one needs two partition functions
of subsequences to the left and to the right of this border, Z L and Z R respectively:

¦ (qk 5 1) 5
Z L (k)Z R (N ¡ k)

Z (N )
. (2)

Boundaries with higher probabilities separate blocks with higher compositional divergence. Therefore,
such boundaries tend to be more stable with the sequence undergoing minor changes. The partition function
approach cannot provide an optimal segmentation of the sequence, but can indicate which boundaries
are more statistically signi� cant. Thus, the two techniques complement each other in obtaining a stable
suboptimal segmentation pattern.

In the following sections we obtain the score that re� ects the block homogeneity.
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2.3. Blocks of random composition. Probabilistic approach

Denote the set of letter probabilities of a multinomial (Bernoulli) sequence as s 5 fh1, h2, . . . , hL g,
which is subject to the normalization condition

LX

k 5 1

hk 5 1. (3)

We shall use s to represent the composition of the block. The objective is to � nd compositions which
provide a high probability of obtaining the block sequence in a series of random tests.

Given the composition, the probability of the counts is P (njs) 5 N !
QL

i 5 1[hn i
i =ni !], whereas the likeli-

hood of the individual sequence to occur is

P (S js) 5
LY

i 5 1

hn
i . (4)

Adoption of the simplest frequency-count estimator of the composition ĥi 5 ni =N results in the trivial
segmentation down to the individual letters which have 100% probability; this is certainly not what we
need. Moreover, the trivial segmentation is statistically unreliable. Thus, the size of the sample should be
taken into consideration, especially for very small samples. This is exactly the case for which the Bayesian
techniques excel. The Bayes estimator can be viewed as a way to directly account for the “missing
information” when the information at hand consists of a � nite data set rather than a full distribution p(s)
(Wolpert and Wolf, 1995).

2.4. Composition probability density function

The Bayesian statistics regards all the parameters of the problem as random variables. In the beginning of
the procedure, these variables have some prior probability distribution,which can be chosen quite arbitrarily.
The experimental data allow one to estimate these probability distributions via the Bayes formula. The
result of the Bayesian estimation is again some probability distribution of the estimated quantity, rather
than a single value considered in the classical statistics (Rozanov, 1985).

However, Bayesian and classical statistics agree for the large samples. More precisely, if we estimate
parameters from large samples, the Bayesian probability distributions converge with probability 1 to the
correct parameter values for any prior (Rozanov, 1985). Thus, the Bayesian estimators are consistent.
However, the choice of prior is much more important for the small quantities of data, which is exactly our
case, since we also consider very short blocks.

The results of previous estimations may be used as the prior for the next step. This technique is referred
to as recurrent estimation and is employed, for instance, in adaptive learning algorithms.

For the composition s 5 fh1, h2, . . . , hL g, write the probability density function p(s), which is a function
de� ned on the simplex ª 5 fs : hk ¶ 0;

PL
k 5 1 hk 5 1g satisfying the normalization condition:
Z

ª
dsp(s) 5 1. (5)

The integral above may be understood in two senses. Wolpert and Wolf regard it as an ordinary
L -dimensional integral over the region extending in each dimension from 0 to 1, whereas the func-
tion under integration has support only on the simplex ª. The other point of view assumes it to be a
� rst-type surface integral taken over the surface of the simplex. These two cases are different for the

p
L !

multiplier related to the total surface of the simplex ª , which is
p

L !
(L ¡ 1)! (see normalization (3)). In our case,

this multiplier cancels in � nal equations, which thus do not depend on the form of the integral. Further
than that, we shall not use this multiplier.

Given some prior distribution p(s), consider a putative segment with sequence S . The Bayes theorem
brings about the posterior probability density function p(sjS )

p(sjS ) 5
P (S js)p(s)

P (S )
(6)
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where

P (S) 5

Z
dsP (S js)p(s) (7)

is the normalization constant called the marginal likelihood (Stephens, 1994; Liu and Lawrence, 1998).
Note, that it is obvious from (4) that the marginal likelihood depends only on the counts n and not on the
order of letters in sequence S. In this paper, we basically use the notation of Wolpert and Wolf (1995),
which agrees with a statistical physicist’s intuition. However, we have changed some of their notations to
those more common in computational biology.

2.5. Prior distributions. Informative versus noninformative priors

Since our analysis includes very short blocks as well, the character of the prior distribution is very
important. The success of the Bayesian techniques depends dramatically on the prior used, especially for
small samples, and the proper choice of the prior should be conditioned by the context of the problem, as
there are no formal recipes.

If the prior that the researcher adopts does not match the prior generating the data, the Bayesian estimators
are far from optimal. The Bayesian approaches are “only as good as the prior.” Other statistical techniques,
such as maximum likelihood, have the advantage that their predictions do not depend on the assumption
of a prior. On the other hand, Bayesian statistics is very convenient in optimization problems, where the
probability distribution is also the subject of optimization, such as in adaptive methods. Another advantage
of Bayesian techniques is that they make all assumptions explicit, by putting them in the prior (Wolpert
and Wolf, 1995).

The simplest prior is a uniform distribution, or noninformative prior (Dunbrack and Cohen, 1997). In
many problems, priors other than uniform must be used. Several computationally effective priors are known
in the Bayesian statistics, such as the Dirichlet prior and the entropic prior (see the discussions in Wolf
and Wolpert (1993, 1995) and Liu and Lawrence (1998).

For the segmentation problem, the choice of the prior actually implies some ideas about the overall
composition of a polymer. In practice, some statistical observations are made on data banks, or on the
composition of the same sequence averaged on a larger scale. Thus, some correlation of the sequence
composition with other sequences or with other parts of the studied sequence is introduced into the
inference. This is particularly evident when the Dirichlet prior is used (Liu and Lawrence, 1998), the very
form of which exhibits counts made beforehand. The more complex entropic prior (Wolf and Wolpert,
1993, 1995) re� ects the statistical homogeneity of the prior source data.

In other words, the choice of any informative prior means that some “natural” statistical dependence
between the block compositions is expected, and the blocks appear as members of a greater family of
sequences with determined statistical properties. But this is essentially the subject of the experimental
(statistical) testing. It is unjusti� ed to make any guess on the sequence composition before studying the
statistical pattern of the whole data bank. In our opinion, the overall data bank of sequences and even
all parts of a suf� ciently long sequence, especially eukaryotic one, make a complex mixture (Sjolander,
1996), the components of which are not very stable with small changes of the data (see D’Onofrio et al.,
(1991) for the experimental evidence and Li (1997) for review). Therefore, the best choice for the initial
studies appears to be a noninformative prior, which does not suggest any statistical dependence.

Observations on data banks (Bernardi et al., 1995; Li, 1997) indicate that probably some clustering
in the composition of different sequences take place, and some values of letter frequencies seem to be
preferred. This situation is re� ected by the Dirichlet mixture prior. We believe that this kind of prior is
likely to improve the results. However, the parameters of the mixture are to be obtained experimentally,
and the technique we use is one of the ways of studying the correlations necessary to construct a better
mixture prior.

2.6. Marginal likelihood. Recurrent estimation

Inspecting (7), one can see that the marginal likelihood is the probability of obtaining the test Bernoulli-
type sequence in the experiment with the frequencies s picked up from the ensemble of uniform compo-
sition (for the uniform prior). In other words, we pick the composition and then start a Bernoulli series
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of N tests. But this is exactly the context in which our problem is formulated: we assume that DNA is a
set of segments having unknown but � xed compositions and try to � nd the approximation that agrees best
with the data (the sequence).

It is easy to calculate the marginal likelihood (7) for the uniform prior:

P (S ) 5 P (n) 5
(L ¡ 1)!

(N 1 L ¡ 1)!
n1! . . . nL ! (8)

(Liu and Lawrence, 1999).
Integration is readily performed using the following expression:

Z

ª
dh1 . . . dhLh

n1
1 . . . hnL

L 5
n1! . . . nL !

(n1 1 . . . 1 nL 1 L ¡ 1)!
. (9)

This integral may be calculated with different tricks, such as the Laplace transform (Wolpert and Wolf,
1995) or change of variables (Grosse, 1996).

Expression (8) also may be obtained by recurrent estimation. Take the � rst letter from the putative
block. It is considered when no information about the composition of the putative block is available (for
the uniform prior). The probability of � nding each letter is P (1, 0, . . . , 0) 5

R
ª dshp(s) 5 1=L , which

looks reasonable. Then we can re-estimate the probability density function: p(sj1, 0, 0, 0) 5 L !h1. For
the four-letter DNA alphabet, it is easy to check that the probability to obtain the same letter in the next
experiment will be 2=5, and the probability to obtain another letter will be 1=5. The formula of conditional
probability P (AB ) 5 P (A )P (B jA ) should be used to obtain the total probability of a two-letter sequence.
In the case of the four-letter DNA alphabet, P (AA ) 5 1=4 2=5 5 1=10 . P (A )P (A ) 5 1=16 and
P (AC) 5 1=4 1=5 5 1=20 , P (A ) P (C) 5 1=16. Therefore, this estimator, like the extreme likelihood
score, does not degenerate for the shorter blocks.

In the general case, the probability to obtain the i-th letter knowing that the previously obtained sequence
has counts n can be written as

P (i jn) 5
ni 1 1
N 1 L

, (10)

(this is the classical Laplace sample size correction estimator, which can be easily calculated directly from
(6) (see Dunbrack and Cohen, 1997; Grosse, 1996; Wolf and Wolpert, 1993). For sequences of arbitrary
length, direct integration demonstrates that the estimation procedure depends not on the order of letters, but
on the counts n. The overall probability of the sequence can be calculated with the use of the conditional
probability formula multiplying estimates (10) for each observed letter up to the corresponding N , starting
with 1=L 5

(L ¡ 1)!
L ! . The result of recurrent estimation coincides with the marginal likelihood (8). By

de� nition, it is a normalized probability determined on a set of sequences of � xed length N .
We refer to this weight as the marginal likelihood weight.
Liu and Lawrence (1998) obtained this weight in a more formal manner by considering the segmented

DNA sequence as a subject for direct Bayesian estimation of both the boundary positions and the block
compositions. Thus, they had to introduce an additional prior of segment boundaries located at the positions
between particular letters.

However, in the case of long segments, the marginal likelihood score does not provide a large number
limit consistent with the segmentation measures obtained from the informational theory approach (see
appendix). Thus, in order to compare our segmentation results with those obtained from informational
theory, we need another homogeneity measure, which corresponds to the information divergence for large
blocks. This measure is discussed in the next section.

2.7. Extreme likelihood

Another way to obtain the weight of a segment is to average the likelihood function (4) with the estimated
probability density (6). We shall refer to this score as the extreme likelihood score. It characterizes the
likelihood of the putative block generation in the most favorable case when the composition is estimated
from the putative block itself. For the noninformative prior p(s) 5 (L ¡ 1)! the probability density is

p(sjn) 5
(N 1 L ¡ 1)!

n1! . . . nL !
h

n1
1 . . . hnL

L . (11)
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With this probability density, the extreme likelihood is

L 1 1 (n) 5
(N 1 L ¡ 1)!

n1! . . . nL !

(2n1)! . . . (2nL )!

(2N 1 L ¡ 1)!
. (12)

The estimator (12) does not degenerate for single-letter blocks. Indeed, for instance, for the four-
letter DNA alphabet L 1 1 (A ) 5 2=5; L 1 1 (AA ) 5 (5!4!)=(2!7!) . 4=25; L 1 1 (AC) 5 2=21 , 4=25.
Furthermore we shall show that it is a good limit for large N . However, it has some disadvantages.
First of all, it tends to overestimate the probabilities of the shorter segments. For instance, the (ACG)n

sequence is naturally expected to be a single block. Closer inspection (using the Stirling formula), however,
demonstrates that given this weight, the segmentation of this sequence to individual letters is the best for
any N . The second drawback is that the block weights cannot serve as normalized probabilities for all
sequences of � xed length: for instance, for L 5 4, N 5 1, L 1 1 (A ) 1 L 1 1 (C) 1 L L 1 1 (G) 1 L 1 1 (T ) . 1.

3. LONG SEGMENTS. COMPARISON WITH INFORMATIONAL APPROACH

We are going to show now that in the case of long segments our results yield the segmentation that
is consistent with the one obtained via the informational technique used, for instance, by Roman-Roldan
et al. (1998) and Bernaola-Galvan et al. (1996). When all components of n are suf� ciently large, the
Stirling approximation n! 5

p
2p nnne ¡ n may be used. The extreme likelihood weight thus approximates

(see appendix)

L 1 1 (n) 5
1

2(L ¡ 1)=2
e ¡ NI (n) (13)

where I (n) 5 ¡
PL

l5 1 ĥl ln ĥl is the information content (multipied by ln 2) and ĥl 5
nl
N is an estimator

for the letter i content; frequency count and Bayesian estimations yield close values in the case of large
N (compare with (10)).

Thus, one can see that the segmentation that uses an extreme likelihood score is essentially an entropic
segmentation for large N and may be considered as an extension of the entropic segmentation for the
case of small N . It should be stressed here that if we consider a direct Bayes estimator for the entropy
(Grosse, 1996; Wolf and Wolpert, 1993, 1995), the closed form of the result will be different from (12). The
question arises whether it is more statistically natural to consider estimators that are reasonable at small
lengths and provide a good large-distance limit, or to try to build estimators of the closed-form entropy
function on small samples. The results of our preliminary computations (Ramensky et al., 1998) indicate
that the Grassberger estimator for entropy (Grosse, 1996) yields contents even more overly estimated than
the extreme likelihood weight, thus providing segmentation down to very short blocks. However, this
estimator is known to overestimate the entropy itself.

In the procedure used by Bernaola-Galvan et al. (1996) (see also Roman-Roldan et al., 1998), the
sequence is divided into two parts of lengths N and M minimizing the Jensen-Shannon divergence measure
(Lin, 1991): I J S (n, m) 5 I (n1 m) ¡ N

N 1 M I (n) ¡ M
N 1 M I (m), where n, m, n1 m are vectors of the counts of

sequence parts and the sequence whole, respectively. This term appears in the expression for the likelihood
ratio function of the partition in the form

L 1 1 (x1, . . . , xN )L 1 1 (y1, . . . , yM )
L 1 1 (x1, . . . , xN , y1, . . . , yM )

¡ ¡ ¡ ¡ ¡ !
N ,M !1

1

2(L ¡ 1)=2
e ¡ (N 1 M )IJ S (n,m) (14)

Therefore, our technique incorporates the approach of Bernaola-Galvan et al., providing a good small-
distance weight.

Roman-Roldan et al. (1998) build a measure of sequence complexity using the function which is subject
to minimization in our Section 2.2.

The marginal likelihood estimator for the large N approximates

P (n) 5

³
2p

N

´(L ¡ 1)=2

ĥ
n11 1=2
1 . . . ĥnL 1 1=2

L 5

³
2p

N

´(L ¡ 1)=2 q
ĥ1 . . . ĥL e ¡ N l(n) . (15)
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For the problem of partition of a sequence into two segments, this weight yields for large N and M the
following likelihood ratio function of the partition:

P (x1, . . . , xN )P (y1, . . . , yM )
P (x1, . . . , xM , y1, . . . , yM )

5

³
2p NM

N 1 M

´(L ¡ 1)=2
vuut ĥ

(N 1 M )
1 . . . ĥ (N 1 M )

L

ĥ
(N )
1 . . . ĥ (N )

L ĥ
(M )
1 . . . ĥ (M )

L

e ¡ (N 1 M )IJS (n,m). (16)

The Jensen-Shannon divergence measure also appears here in the exponential function, but the pre-
exponential multipliers are also dependent on n.

4. ALGORITHM. DYNAMIC PROGRAMMING

Given the score function, the algorithmic part of the segmentation problem is formulated as follows.
Consider the sequence S 5 s1s2s3 . . . sN of length N , where si 2 « . For every segment S (a, b) 5
sa . . . sb, a 2 b, there is weight W (a, b), which equals ln P (S (a, b)) for the marginal likelihood score, and
ln L 1 1 (S (a, b)) for the extreme likelihood score.

Any particular segmentation R in m blocks is determined as a set of boundaries R 5 fk0 5 0, k1, . . . ,
km ¡ 1, km 5 N g, where ki separates ski and ski 1 1; k0 , k1 , . . . , km ¡ 1 , km . De� ne the weight of
segmentation R as

F (R ) 5
mX

j 5 1

W (k j ¡ 1 1 1, k j ). (17)

4.1. Optimal segmentation

The optimal segmentation R ¤ that maximizes F (R ) is found in the recurrent manner (Finkelstein and
Roytberg, 1993). Denote by R ¤(k) the optimal segmentation of the fragment S (1, k), 1 µ k µ N . Calcu-
lation of R ¤(1) is trivial. In the case of known optimal segmentations R ¤(1), . . . , R ¤(k ¡ 1), the optimal
segmentation R ¤(k) is found using the following recurrent expression

F (R ¤(k)) 5 max
i 5 0,...k ¡ 1

[F (R ¤(i )) 1 W (i 1 1, k)] (18)

Here, we put F (R ¤(0)) 5 0. Since the building of a segmentation R ¤(k) takes the time ¹ k, the total time
can be estimated as N 2.

4.2. Partition function calculation

For functions determined on the segmentations, we shall also use another set of variables, namely the
indicators of the boundary positions qk , k 5 1, . . . , N . By de� nition, qk 5 1 if there exists a segment
boundary after the letter k, otherwise qk 5 0. We shall use both variables, F (R ) and F (q1, . . . , qk ), without
special comments.

Using (17), the partition function (1) may be rewritten as follows (Finkelstein and Roytberg, 1993):

Z (N ) 5
X

q1

. . .
X

qN ¡ 1

eF (q1, ...qn ¡ 1) . (19)

To calculate the probability of a boundary after the letter k, we need also the partition functions of the
segments to the left and to the right of this boundary:

Z L (k) 5
X

q1

. . .
X

qk ¡ 1

eF (q1 ,...,qk ¡ 1) (20)

Z R (k) 5
X

qk

. . .
X

qN ¡ 1

eF (qk , ...,qN ¡ 1) . (21)
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The recurrent formulae to calculate Z L (k) and Z R (k) are analogous to (18) and are obtained through the
formal substitution of operations. Summation is used instead of taking the maximum, and multiplication
is used instead of summation (Finkelstein and Roytberg, 1993). Then the following relations correspond
to (18):

Z L (k) 5
k ¡ 1X

j 5 0

eW ( j 1 1,k ¡ 1)Z L ( j) (22)

Z R (k) 5
NX

j 5 k

eW (k, j )Z R ( j ) (23)

with the respective boundary conditions

Z L (0) 5 Z R (N 1 1) 5 1; W (k ¡ 1, k) 5 W (N , N 1 1) 5 0. (24)

Note that this problem can be reformulated as an optimal path problem for a corresponding weighted
oriented acyclic graph (Finkelstein and Roytberg, 1993; cf. also the Viterbi algorithm, Ryan and Nudd,
1993). The graph G has n 1 1 vertices, or states V0, . . . , Vn in terms of Viterbi, where a vertex Vi

corresponds to the boundary between the i th and (i 1 1)st symbols of the given sequence. The edges
connect all pairs of vertices (Vi, Vj), where i , j . The weight of the edge ViVj is equal to log Wi1 1,j.
It is obvious that the path from V0 to Vn having a maximal possible weight corresponds to an optimal
segmentation.

Relations (22, 23) can be obtained straightforwardly, without substitution of operations. To prove (22),
divide all partitions of the initial segment S (1, k) into groups according to the last block in the partition.
Then each term in the sum (22) corresponds to such a group.

5. EXAMPLES OF SEGMENTATIONS OF GENOMIC SEQUENCES

In this section we discuss the implementations of the algorithm described and correlate the computed
change points with the textual patterns found in genomic sequences with L 5 4. The � rst two examples
illustrate the patterns found in the optimal segmentation without any � ltration. In all examples, we use the
marginal likelihood score, which is more consistent with the general Bayesian framework and de� nitely
works better when the segments are short.

Several preliminary remarks should be made. When the same letters neighbor, they always belong to one
segment. This results from the fact that the log-score is an additive function. The same is true for dimers
such as ACAC. On the other hand, large number statistics studied in Stirling approximations demonstrates
that long strands containing only one letter or equal shares of two or three letters belong to one block.
Conversely, a long strand containing equal shares of all four letters has a score lower than that obtained
for the individual letters.

This is the result of adopting a uniform prior. If one uses an informative prior with signi� cantly biased
expected frequencies, then the sequence containing equal shares of all four letters can preferably belong
to one block.

The arguments above are illustrated with the � rst example (Fig. 1), which is the optimal segmentation of
the � rst 1000bp of yeast chromosome I. One can see that the regions with dramatically biased compositions
constitute individual blocks (shown with bold letters). These are the telomeric region containing only A
and C bases, and another 141bp region starting at position 154 and containing only four occurrences of G.

At the same time, regions with more uniform composition tend to be segmented into much shorter
blocks containing only two or three types of letters. There are also plenty of single-letter “segments.”

Short segments containing not all letters of the alphabet can also be of biological interest. This is il-
lustrated with Figure 2, which presents the optimal segmentation of human promoter IGFBP4 (EMBL
sequence HSIGBP4, (Zazze et al., 1998)). One can easily see that most segments observed are the palin-
dromic (or similar) sequences abundant in eukaryotic promoters.



224 RAMENSKY ET AL.

c
c

a
c

a
c

c
a

c
a

c
c

c
a

c
a

c
a

c
c

c
a

c
a

c
a

c
c

a
c

a
c

c
a

c
a

c
a

c
c

a
c

a
c

c
a

c
a

c
c

c
a

c
a

c
a

c
a

c
a

c
a

t
c

c
t

a
a

c
a

c
t

a
c

c
c

t
a

a
c

a
g

c
c

c
t

a
a

t
c

t
a

a
c

c
c

t
g

g
c

c
a

a
c

c
t

g
t

c
t

c
t

c
a

a
c

t
t

a
c

c
c

t
c

c
a

t
t

a
c

c
c

t
g

c
c

t
c

c
a

c
t

c
g

t
t

a

c
c

c
t

g
t

c
c

c
a

t
a

a
c

c
a

t
a

c
c

a
c

t
c

c
g

a
a

c
c

a
c

c
a

t
c

c
a

t
c

c
c

t
c

t
a

c
t

t
a

c
t

a
c

c
a

c
t

c
a

c
c

c
a

c
c

g
t

t
a

c
c

c
t

c
c

a
a

t
t

a
c

c
c

a
t

a
t

c
a

c
c

c
>

<
a

c
t

g
c

c
a

c
t

t
a

c
c

c
t

a
c

c
a

t
t

a
c

c
c

t
a

c
c

a
t

c
c

a
c

c
a

t
g

a
c

c
t

a
c

t
c

a
c

c
a

t
a

c
t

g
t

t
c

t
t

c
t

a
c

c
c

a
c

c
a

t
a

t
a

a
a

c
g

c
t

a
a

c
a

a
a

t
g

a
t

c
g

t
a

a
a

t
a

a
c

a
c

a
c

a
c

g
t

g
c

t
t

a
c

c
c

t
a

c
c

a
c

t
t

t
a

t
a

c
c

a
c

c
a

c
c

a
c

a
t

g

c
c

a
t

a
c

t
c

a
c

t
c

a
c

t
t

g
t

a
t

a
c

t
g

a
t

t
t

t
a

c
g

t
a

c
g

c
a

c
a

c
g

g
a

t
g

c
t

a
c

a
g

t
a

t
a

t
a

c
c

a
t

c
t

c

a
a

a
c

t
t

a
c

c
c

t
a

c
t

c
t

c
a

g
a

t
t

c
c

t
t

c
a

c
t

c
c

a
t

g
g

c
c

c
a

t
c

t
c

t
c

a
c

t
g

a
a

t
c

a
g

t
a

c
c

a
a

a

t
g

c
a

c
t

c
a

c
a

t
c

a
t

t
a

t
g

c
a

c
g

g
c

a
c

t
t

g
c

c
t

c
a

g
c

g
g

t
a

t
a

c
c

c
t

g
t

g
c

c
a

t
t

t
a

c
c

c
a

t
a

a
c

g
c

c
c

a
t

c

a
t

t
a

t
c

c
a

c
a

t
t

t
t

g
a

t
a

t
c

t
a

t
a

t
c

t
c

a
t

t
c

g
g

c
g

g
t

c
c

c
a

a
a

t
t

g
t

a
t

a
a

c
t

g
c

c
c

t
t

a
a

t
a

c
a

t
a

c
g

t
t

a
t

a
c

c
a

c
t

t
t

t
g

c
a

c
c

a
t

a
t

a
c

t
t

a
c

c
a

c
t

c
c

a
t

t
t

a
t

a
t

a
c

a
c

t
t

a
t

g
t

c
t

a
t

t
a

c
a

g
a

a
a

a
a

t
c

c
c

c
a

c
a

a
a

a
a

t
c

a
c

c
t

a
a

a
c

a
t

a
a

a
a

a
t

a
t

t
c

t
a

c
t

t
t

t
c

a
a

c
a

a
t

a
a

t
a

c
a

t
a

a
a

c
a

t
a

t
t

g
t

t
g

t
g

g
t

a
g

c
a

a
c

a
c

t
a

t
c

a
t

g
g

t
a

t
c

a
c

t
a

a
c

g
t

a
a

a
a

g
t

t
c

c
t

c
a

a
t

a
t

t
g

c
a

a
t

t
t

g
c

t
t

g
a

a
c

g
g

a
t

g
c

t
a

t
t

t
g

a
a

t
a

t
t

t
c

g
t

a
c

t
t

a
c

a
c

a
g

g
c

c
a

t
a

c
a

t
t

a
g

a
a

t
a

a
t

a
t

g
t

c
a

c
a

t
c

a
c

t
g

t
c

g
t

a
a

c
a

c
t

c
t

t
t

a
t

t
c

a
c

c
g

a
g

c
t

a
a

t
a

c
g

g
t

a
g

t
g

g
c

t
c

a
a

a
c

t
c

a
t

g
c

g
g

g
t

g
c

t
a

t
g

a
t

a
c

a
a

t
t

a
t

a
t

c
t

t
a

t
t

t
c

c
a

t
t

c
c

c
a

t
a

t
g

c

t
a

a
c

c
g

c
a

a
t

c
c

t
a

a
a

a
g

c
a

t
a

a
c

t
g

a
t

g
c

a
t

c
t

t
t

a
a

t
c

t
t

g
t

a
t

g
t

g
a

c
a

c
t

a
c

t
c

a
t

a
c

g
a

a
g

g
g

a
c

t
a

t
a

t
c

t
a

g
t

c
a

a
g

a
c

t
a

c
t

g
t

g
a

t
a

g
g

t
a

c
g

t
t

a
t

t
t

a
a

t
a

g
g

a
t

c
t

a
t

a
a

c
g

a
a

a
t

g
t

c

a
a

a
t

a
a

t
t

t
t

a
c

g
g

t
a

a
t

a
t

a
a

c
t

t
a

t
c

a
g

c
g

g
t

a
t

a
c

t
a

a
a

a
c

g
g

a
c

g
t

t
a

c
g

a
t

a
t

t
g

t

F
IG

.
1.

O
pt

im
al

se
gm

en
ta

ti
on

of
th

e
�r

st
10

00
bp

of
ye

as
t

ch
ro

m
os

om
e

I.



SEGMENTATION OF DNA SEQUENCES 225

c
c

t
c

a
a

a
t

c
c

t
t

c
a

c
t

g
c

c
a

t
c

t
g

g
g

a
a

a
t

g
a

t
c

a
c

a
a

c
a

g
c

t
c

t
a

c
a

a
a

t
a

c
a

c
a

a
t

g
a

t
t

a
c

a
a

g
g

a
a

t
g

g
t

g
c

c
c

c
a

c
t

g
g

a
g

t
t

g
t

t
c

a
a

c
g

c
a

a
a

a
c

t
t

g
c

a
c

a
t

t
g

c
a

a
g

t
g

g
c

a
a

t
c

t
c

c
c

a
g

g
c

c
t

g

c
c

t
c

c
c

t
c

c
a

c
g

a
g

t
g

g
g

t
c

t
g

a
a

t
g

g
g

c
c

t
g

a
g

a
g

g
c

a
a

a
c

a
t

c
c

a
a

g
a

a
g

g
a

g
g

a
a

g
a

g
g

c
t

c
g

g
c

g
g

c
a

c
c

t
c

c
c

t
c

c
c

c
g

g
g

a
g

t
t

c
t

g
c

t
g

a
t

t
c

c
a

t
c

t
t

g
g

g
g

a
a

g
c

a
g

g
g

t
g

g
a

c
c

a
g

g
g

c
c

c
a

a
a

t
g

c
g

c
c

c

t
g

g
g

g
a

g
a

t
t

g
c

g
g

g
g

g
c

g
g

g
a

g
a

g
g

t
t

g
c

a
a

g
g

g
g

c
a

a
g

t
g

g
c

a
a

g
a

g
c

c
t

g
t

t
a

a
c

g
t

c
t

t
a

g
g

g
c

c
t

c
c

a
g

g
c

c
t

t
t

c
t

g
t

g
c

c
c

c
t

a
g

c
t

g
t

g
c

c
t

g
t

a
c

g
c

t
t

t
a

c
c

c
c

a
c

c
t

c
a

g
g

a
g

g
c

t
t

g
g

t
c

t
c

c
a

g
c

g
g

t
t

g
a

g
g

c
t

g
g

a
a

g
c

a
c

c
g

g
g

g
t

g
c

g
g

t
g

g
a

a
a

g
g

g
c

t
c

t
g

t
c

c
a

g
g

a
a

g
a

c
c

g
g

a
t

c
c

g
c

a
g

a
g

c
c

g
g

g
a

g
t

c
c

g
g

g
c

t
a

g
g

a
a

g
t

c
c

c
t

t
t

c
t

c
g

g
t

g
g

g
a

g
a

c
t

g
a

g
g

c
c

g
c

c
t

t
g

g
c

g
g

g
g

c
g

g
g

a
c

g
a

g
a

c
t

c
c

t
c

c
g

a
g

g
t

c
g

g
g

a
a

a
g

g
g

g
g

c
c

c
c

g
c

a
g

c
a

g
c

c
c

c
t

t
g

g
c

t
t

c
c

c
t

t
c

t
c

c
c

t
t

g
c

c
t

c
c

c
c

t
c

c
g

g
g

g
c

t
c

c
g

g
t

t
c

a
g

a
g

g

c
a

c
t

c
t

g
g

g
c

g
c

c
t

g
c

t
a

c
a

g
c

t
t

c
c

a
a

a
c

t
g

c
g

c
c

g
c

t
t

c
c

t
t

c
t

t
c

g
g

c
a

g
a

a
a

a
g

g
a

c
t

t
t

c
a

g
a

t

g
c

g
g

c
g

g
c

g
g

c
g

g
c

g
g

c
g

g
c

g
a

c
t

c
a

g
g

a
c

a
g

c
g

c
c

c
c

c
t

c
c

c
c

t
a

a
c

g
g

c
c

g
c

c
t

c
t

c
c

c
t

c
t

c
c

c
c

c
t

c
g

c
c

c
g

c
c

c
c

g
g

c
t

c
c

c
c

c
a

c
c

t
c

t
g

g
g

a
a

g
g

c
g

c
t

g
g

g
g

g
t

g
t

g
g

c
c

a
g

g
g

a
c

c
g

g
t

a
t

a
a

a
g

t
c

c
g

g
g

g
g

a
g

c
c

g
g

t
c

c
c

g
g

g

F
IG

.
2.

O
pt

im
al

se
gm

en
ta

ti
on

of
th

e
hu

m
an

IG
F

B
P

4
pr

om
ot

er
.



226 RAMENSKY ET AL.

FIG. 3. Histogram of partition probabilities of the E.coli ECCSRASER region.

If one is interested in segmentation on a larger scale, some segments with close compositions should be
merged. In our algorithm, this is done with the help of the partition function.

Generally, the boundaries between long blocks with different compositions correspond to the partition
function maxima. However, this probability is a rather smooth function of the sequence position (see
discussion in Section 6), and the inner boundaries of compositionally biased segments close to their
margins also have relatively high values. Thus, the partition function probabilities should be used with
caution.

In our approach, we calculate the optimal segmentation and then use the partition function to merge
blocks produced by the optimal segmentation. In so doing, the partition function is calculated taking into
account only the segmentations obtained by merging the optimal blocks. In this case, the inner boundaries
of compositionally biased segments do not obscure the picture.

FIG. 4. Histogram of partition probabilities for the boundaries of optimal segmentation of the E. coli ECCSRASER
region.
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FIG. 5. Filtered boundaries of optimal segmentation of the E.coli ECCRASER region.

This is illustrated with Figures 3 and 4. Figure 3 displays the histogram of the partition probabilities of
segmentation of the E. coli 708bp sequence region coding the ECCSRASER gene. The optimal segmenta-
tion consists of a number of quite short blocks. Figure 4 displays the histogram of boundary probabilities
resulting from the optimal segmentation. One can clearly see that modes in Figure 4 are more distinct than
in Figure 3, which is the result of excluding the inner boundaries of optimal segments. Boundaries corre-
sponding to the points in the right part of the histograms separate long regions of different composition.
Figure 5 shows the boundaries with probabilities (in Figure 4) higher than 0.61. These segments correlate
with the coding regions and intergenic elements.

6. DISCUSSION

Our segmentation algorithm is free of heuristic approximations and provides a reasonably large N limit.
Both optimal segmentation and partition function calculations require a computational time of the order
of squared sequence length. In this section, we are going to compare our technique with that of Liu and
Lawrence, who use a similar approach to the segmentation problem, and discuss some possible applications
of our technique.

We shall refer to objects in Liu and Lawrence (1999) adding letter “L” after the formula and � gure
numbers.

The important step in the algorithm of Liu and Lawrence is the segmentation to the given number
of segments k. They consider all segmentations with k segments as statistically independent (“model
independence assumption”) and equally likely. An additional prior probability is introduced for the number
of segments; this probability is inversely proportional to the number of ways to segment the sequence into
the given number of blocks. The probabilities of all possible segmentations are summed using the model
independence assumption to obtain the marginal likelihood for the whole model (note that our marginal
likelihood (8) is calculated for a single segment). Thus, in contrast to our technique, the summands
corresponding to the segmentations with different k participate in the marginal likelihood sum with different
weights.

In our approach, the value that is the closest relative of the marginal likelihood of the Liu and Lawrence
model is the partition function (1). The difference is that in the technique used by Liu and Lawrence the
terms corresponding to the segmentations with different k are weighted to the number of ways to segment
the sequence into k parts.

The � rst step in the Liu and Lawrence technique is the calculation of the posterior probability of
observing the segmentation of the sequence into k segments, which would in our terms correspond to
the calculation of the partition function for all possible partitions into k segments. They do it using a
recursive algorithm, which requires in our estimates about N 2 k=2 steps, where N is the length of the
whole sequence.

The resulting values allow them to obtain the posterior distribution of the number of segments in the
sequence. In our terms, the posterior distributions for the segmentation into k segments is proportional to
the partition function of the segmentations into k segments related to the number of its summands, or the
mean likelihood of the segmentation. This is a useful value, allowing one to estimate the smallest number
of segments necessary to make a reasonable segmentation. When k is smaller than the “real number” of
segments in the sequence, then all possible segments participating in the k-segmentation are “bad,” i.e.,
overlap with several “natural” segments. (This explains the steep front of the histogram in Figure 4L.) The
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smooth tail of the distribution appears to be less informative. This agrees with the remark of Stephens
(1994), who also considered this problem, that the number of models with different k should be small,
and it is generally very dif� cult to make a formal choice between the models. As we do not consider
independent segmentations with different k, we do not calculate this value.

The next value calculated by Liu and Lawrence is the probability that a change point will occur at
position n (19L). Note that probabilities in (19L) are summed without their combinatorial weights, thus
they coincide with our partition functions Z L and Z R , differing only in the normalization.

Using our version of dynamic programming we calculate the numerator much faster (for about k2

(N ¡ k)2 instead of k3 (N ¡ k)3).
Moreover, we have observed that probability (2) is of limited use for complicated sequences. The

problem is that expression (2) has high values at all points close to the “true” change point (note the
bell-like maxima in Figure 5L). The “true” change points de� nitely correspond to the maxima, but in the
case of a complex sequence, a computer search for the true maxima (excluding probably the several highest
ones) is rather dif� cult. That is why we use the partition function to � lter the boundaries already produced
by the optimal segmentation: the change points between optimal blocks (which as a rule are very short,
see Figures 1, 2) are always placed at correct positions as are the change points between the longer blocks
after � ltration.

Liu and Lawrence also obtained several values, such as distribution of boundaries and distribution of the
segmented composition using a sampling procedure. These are important results (especially those related to
distribution of the composition). However, it is not clear whether it is possible to obtain reliable sampling
results for a sequence of several thousand base pairs. Since we are more interested in the speci� c positions
of change points rather than in the distributions, we did not use sampling.

We are going now to discuss the possible applications of our segmentation agorithm in biological
studies. We believe that it may be applied to every problem in which the nucleic acid composition is
important. For instance, one can mention the compositional difference between exons and introns, various
dependences in DNA, and RNA composition associated with structural motifs, e.g., loops. Moreover, long
eukaryotic genomic regions have been sequenced, so it will be possible to study the isochoric organization
of eukaryotic genes directly. Among other examples of biological problems that can be solved with our
technique, we would like to mention the search of gene migration events between genomes with highly
different average nucleotide content.

Our technique also may be helpful to calculate the DNA melting curve in thermodynamic experiments.
The segmentation obtained can be used for further studies on DNA complexity or fractal structure (Karlin

and Brendel, 1993; Peng et al., 1992). To this end, the distribution of the lengths of homogeneous blocks
may be very informative. Obviously, some, if not a decisive, contribution to the sequence complexity
measured with various informational measures is explained by the compositional patchiness of the DNA
sequence. This patchiness is mostly associated with sense or structural units, exons for instance (Herzel and
Grosse, 1997). However, our preliminary studies (Ramensky et al., 1998) indicate that long homogeneous
segments are not necessarily associated with exons and introns and are likely to be of a much broader
origin. A direct study of the DNA patchiness at the level of full genomes will allow one to understand to
what extent the complexity of DNA is due to compositional patterns, and to what extent it is due to more
subtle correlations.

The investigation of the length distribution of homogeneous segments obtained for long genomic regions
will provide a � nal answer in the discussion on the origin of the fractal dependences in DNA correlation
plots (Karlin and Brendel, 1993).

APPENDIX

Marginal and extreme likelihood in the case of large N

Using the Stirling approximation n! 5
p

2p nnne ¡ n , it is easy to calculate the form of extreme likelihood
and marginal likelihood for large N . Consider the following fraction:

(N 1 L ¡ 1)!
n1! . . . nL !

5
(n1 1 . . . 1 nL 1 L ¡ 1)!

n1! . . . nL !
. (A1)
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The Stirling approximation of the numerator contains the term

(N 1 L ¡ 1)N 1 L ¡ 1 5 N N
³

1 1
L ¡ 1

N

´N

(N 1 L ¡ 1)L ¡ 1. (A2)

The second multiplier equals eL ¡ 1 for large N . Then, the direct Stirling approximation of the fraction (A1)
is

(N 1 L ¡ 1)!
n1! . . . nL !

!

s
N L

n1 . . . nL

³
N

2p

´(L ¡ 1)=2 ³
N

n1

´n1

. . .

³
N

nL

´nL

. (A3)

Introducing the point estimator pk 5 nk=N , one can rewrite (A3) as

(N 1 L ¡ 1)!
n1! . . . nL !

!
³

N

2p

´(L ¡ 1)=2

p ¡ (n11 1=2)
1 . . . p ¡ (nL 1 1=2)

L . (A4)

Hence, it is easy to calculate the approximations for the extreme likelihood

(N 1 L ¡ 1)!
n1! . . . nL !

(2n1)! . . . (2nL )!

(2N 1 L ¡ 1)!
! 2 ¡ (L ¡ 1)=2 pn1

1 . . . pnL
L , (A5)

and marginal likelihood.
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