The database of RNA secondary structure elements

E.F. Baulin, M.A. Roytberg

Higher School of Economics, Moscow, Russia; IMPB RAS, Pushino, Russia baulin@rambler.ru, mroytberg@lpm.org.ru

Introduction

We propose a new definition of the loop, which on the one hand is a generalization of Nearest Neighbour Model (NNM), developed by Zucker-Matthews-Turner [1], and on the other hand allows to divide into loops an arbitrary secondary structure, not only the pseudoknot-free structure. Based on the description we have created the database of elements of secondary structures of experimentally determined structures of RNA.

Generalized loops

1. Basic Definitions

3. Loop Classification

A helix is a non-extendable sequence of base pairs of the form (i, A loop is called classical if it does not contain wings and $j),(i+1, j-1), \ldots,(i+k, j-k), k \geq 2$. The chain fragment $[i, i+k]$ is a left faces of complex closed regions. wing of the helix, the fragment $[j-k, j]$ is a right wing.

Pair (i, j) is an external pair of the helix or a face. Pair $(i+k, j-k)$ will be called an internal pair of the helix.

The position t of the chain belongs to a helix H, if it lies between the nucleotides forming its internal pair and there is no helix H 1 , lying inside H, such that $x<t<y$, where (x, y) is the face of H 1 .

Loop of a helix H is the set of all positions that belong to the helix H. There is one-to-one correspondence between loops and helices

2. Closed Regions and Planes

Let H be a helix and (u, v) be its internal pair.
Region $[i, j]$ is closed under H if: $[i, j]$ lies inside H; there is no such pair (k, t) that ($i \leq k \leq j<t<v$) or ($u<k<i \leq t \leq j$); there are pairs (i, k) and (t, j), where $k \leq j ; i \leq t$; there is no other than $[i, j]$ region $\left[i^{\prime}, j^{\prime}\right]$ such that $i^{\prime} \leq i<j \leq j^{\prime}$ and the region $\left[i^{\prime}, j^{\prime}\right]$ satisfies three previous conditions.

Closed region is simple if its face is the face of a helix and complex otherwise.

A plane is a fragment between two faces. Namely, let $\left(s_{1}, t_{1}\right)$,
$\ldots,\left(s_{n}, t_{n}\right)$ - faces of all closed under H regions; $s_{1}<t_{1}<\ldots<s_{n}<t_{n}$. $t_{0}=u ; s_{n+1}=v$. Then the k-th plane of the loop of H is a fragment $\left[t_{k-1}+1, s_{k}-1\right]$, here $1 \leq k \leq n+1$.

A non-classical loop is isolated if it does not contain wings
and pseudoknotted otherwise.
Hairpins, bulges, internal and multiple loops are defined as usual depending of number of planes within a loop. They can be classical, isolated or pseudoknotted

Loops: 1 - pseudoknotted multiple; 2 - classical hairpin; 3,4,7,8 pseudoknotted hairpin; 5 - pseudoknotted internal; 6 - isolated internal *Red boxes mark two complex closed regions: 1) from the beginning of Helix1's left wing to the end of the Helix2's right wing, and : 2) from the beginning of Helix7's left wing to the end of the Helix8's right wing.

Database

Input data: all PDB v.3.3 documents containing RNA chains. We have analyzed 6716 models from 1674 documents, 3169 RNA chains were handled (excluding the representation of the same chain in several models). The database contains tables of helices, loops, faces, RNA-Protein contacts, etc. Currently DB contains information about more than 78000 loops, around 149000 non-paired regions (threads), and more than 1 million residue contacts. The beta-version of the database: http://server2.lpm.org.ru/~baulin/home.html.
The web-interface allows one search by documents, loops and different types of contacts between residues or atoms using various arguments.

Table of Loops						
Number	Type/Class	Hairpin	Internal	Buldge	Multiple	Total
	Classical	26219	16973	16666	9003	68861
	Isolated	0	122	1175	1217	2514
	Pseudoknotted	4416	674	35	1517	6642
	Total	30635	17769	17876	11737	78017
Total Length	Classical	165261	117638	19578	133215	435692
	Isolated	0	788	1362	20028	22178
	Pseudnknotted	4)747	18847	370	97078	159187

Triple knots

Question: whether there are pseudoknotted structures that cannot be represented as a planar graph?. In other words: can a position belong to three loops? In this case a structure should contain a triple knot. A structure of RNA is called triple knot if it contains three helices A, B, C, their wings are in following order: AL, BL, CL, AR, BR. CR.
A search detected 233 structures that contain a triple knot. All such knots are in homologous to each other sections of 23 S RNA; in two of the three helices wings are complementary, and in one - not (in all cases except one, the "bad" helix is A); all helices are usually short (2-3 pairs) in a small number of cases

We thank S.A.Spirin, D.N. Ivankov and D.V.Khachko for useful discussions.

