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ABSTRACT

In many applications, the algorithmically obtained alignment ideally should restore the

“golden standard” (GS) alignment, which superimposes positions originating from the same

position of the common ancestor of the compared sequences. The average similarity between

the algorithmically obtained and GS alignments (“the quality”) is an important charac-

teristic of an alignment algorithm. We proposed to determine the quality of an algorithm,

using sequences that were artificially generated in accordance with an appropriate evolution

model; the approach was applied to the global version of the Smith-Waterman algorithm

(SWA). The quality of SWA is between 97% (for a PAM distance of 60) and 70% (for a PAM

distance of 300). The percentage of identical aligned residues is the same for algorithmic

and GS alignments. The total length of indels in algorithmic alignments is less than in the

GS—mainly due to a substantial decrease in the number of indels in algorithmic alignments.

Key words: accuracy of alignment, alignment reliability, confidence of alignment, insertion/

deletion, protein sequence alignment.

1. INTRODUCTION

PAIR-WISE SEQUENCE ALIGNMENT is the basic method of comparative analysis of proteins and nucleic

acids. The most popular algorithms (Needleman and Wunch, 1970; Smith and Waterman, 1981; Lipman

and Pearson, 1985; Altschul et al., 1990) are based on sequence comparison only. More sophisticated

methods (Wallqvist et al., 2000; Litvinov et al., 2006) take into account the secondary structure of proteins.

Distance-based methods are now widely used for building evolutionary trees (Saitou and Neil, 1987). The

approaches to measuring the distance can be divided into two classes. In the first class, the percentage of

non-identical sites is calculated. The second class uses matrices determining the weights of amino acid

substitutions (Hollich et al., 2005). In the case of distance estimators of the second type, each pair of

sequences requires reliable pair-wise alignments.

For many applications, including evolutionary modeling, it is important to evaluate the “quality” of

algorithmically obtained alignments (i.e., how close the algorithmic alignment is to the “evolutionarily

true” one). Here, the “evolutionarily true” alignment is an alignment superimposing the positions originating

from the same position of the common predecessor (Sunyaev et al., 2004). However, the evolutionarily

true alignment of given sequences is usually unknown, and thus an approximation is needed.
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Papers studying the quality of alignment algorithms typically use the three-dimensional (3D) sequence

alignment as such an approximation. The reason for this choice is that the 3D structure of proteins is much

more conservative than their amino acid sequences (Doolittle, 1981).

Moreover, Vingron and Argos (1990) have shown a link between the degree of stability of the region

of optimal global alignment with respect to the set of suboptimal alignments and their similarity to the

structure-based alignment: the regions of optimal alignment frequently repeating in suboptimal alignments

display maximal similarity to the structure-based alignment. Based on this observation, Mevissen and

Vingron (1996) suggested using the difference between the weights of the optimal alignment and the

alignment of maximal weight without matching i -th and j -th residues of proteins as the validity measure

of the matching. Another measure for the validity of a matching within the alignment was proposed by

Schlosshauer and Olsson (2002). The measure is also based on the comparison of the optimal alignment

and an appropriate suboptimal one.

Our approach to the analysis of algorithmic alignments differs from the approaches described above. We

are not interested in the validity of individual positions, but rather in the similarity between the algorithmic

alignment and the “golden standard” (GS) alignment of the same sequences (Vogt et al. 1995; Domingues

et al., 2000; Sunyaev et al., 2004). As mentioned above, the papers use the alignments obtained by the

superposition of 3D structures as the golden standard. These alignments may differ from the evolutionarily

true alignments, and thus lead to errors of unknown proportions in the quality estimation. To overcome

this drawback, we propose using artificial pairs of sequences instead of pairs of homologous proteins. In

any pair of artificial sequences, one is a random sequence, and the other is obtained from it by mutations,

insertions, and deletions in accordance with an appropriate model of the evolution—namely, the model

suggested in Dayhoff et al. (1978), Benner et al. (1993), and Reese and Pearson (2002). Therefore, the true

alignment of the sequences is known from the pseudo-evolution process. A similar approach was used in

Polyanovskii et al. (1994), but the rules for deletions were too simple, while no insertions were allowed.

We have performed the comparative analysis of algorithmic and GS alignments based on the “artificial

evolution process.” Within the analysis, we have studied both the measure of similarity between the

algorithmic and GS alignments, and the correspondence between the distribution of insertions/deletions

(indels) and substitutions in algorithmic and GS alignments. The analysis showed that the differences

between algorithmic and GS alignments concern mainly the number and mean lengths of indels.

Similarly to Vogt et al. (1995), Domingues et al. (2000), and Sunyaev et al. (2004), we have studied the

Smith-Waterman algorithm (SWA), but we have studied its global version, since the compared sequences

as a whole are similar in our case.

We have investigated different evolution distances, namely, from 60 to 300 point accepted mutations

(PAM), which, on average, corresponds to sequence identity between 58% and 16%.

2. METHODS AND ALGORITHMS

2.1. Measures of alignment similarity

To describe the similarity between the algorithmic and the GS alignments of the given pair of protein

sequences, we use the following characteristics (Vogt et al., 1995; Domingues et al., 2000; Sunyaev et al.,

2004). Alignment accuracy is the number I of positions identically superimposed in the algorithmic and

the GS alignment, divided by the total number G of positions in the GS alignment:

Accuracy D I=G (1)

Alignment confidence is defined analogously to the notion of accuracy (Eq. (1)):

Confidence D I=A (2)

where I is again the number of residues identically aligned in algorithmic and GS alignments, and A is

the total number of aligned positions in the algorithmic alignment.

Finally, the overall correctness is an integral measure of the algorithmic alignment—the average of its

accuracy and confidence:

Overall correctness D 2 � I=.G C A/ (3)
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In the evolution model under study, accuracy and confidence are similar for global alignments; therefore,

overall correctness was mainly used.

2.2. General description of the approach

We calculate the above values according to the following procedure. First, the test set consisting of

10,000 pairs of amino acid (aa) sequences is to be generated; then, the set is characterized by (a) sequence

length L and (b) evolutionary distance D within the pair. We have used two values of L (200 and 500 aa)

and four values of D (60, 100, 200, 300 PAM). Thus, we have considered 2 � 4 D 8 test sets.

The first sequence of each pair is a random sequence of length L. All positions are regarded as

independent and have the same amino acid composition as described in Dayhoff et al. (1978). The second

sequence in the pair was obtained from the first by a mutational process, including both substitutions and

insertions/deletions (indels); the frequencies and other parameters of mutations correspond to the given

evolutionary distance D (see Section 2.3 for details). The set of mutational events determines the alignment

of the sequences; the alignment is regarded as the GS.

For each pair of sequences, we then produce the algorithmic alignment and compute its accuracy, con-

fidence, and overall correctness with respect to the above GS. The average values of accuracy, confidence,

and quality for all 10,000 sequence pairs of the given test set will serve as quantitative measures of

closeness between the algorithmically obtained alignments, and the true ones for given sequence length

and evolutionary distance.

2.3. Modeling evolution

The modification of a random sequence taken as the first element of a sequence pair consists of several

steps. The parameters of these steps depend on the chosen evolutionary distance D, measured in PAM units

(Dayhoff et al., 1978). Deletions are performed first, followed by insertions, and, finally, by substitutions.

The generation of random homologous sequences was done from scratch because the existing tools, e.g.,

ROSE (Stoye et al., 1998), were designed to generate multiple alignments and do not support the desired

model of evolution.

2.3.1. Total length of indels. The total length of all insertions and deletions T equals

T D L � P.indel/ � Mı;

where L is the length of the sequence. P.indel/ is the probability of insertion/deletion appearance, which

was calculated using the formula proposed in Reese and Pearson (2002):

P.indel/ D 0:0224 � 0:0219 � e � �.�0:01168 � D/;

where D is the distance between the sequences in PAM units. Mı is the mathematical expectation of the

length of insertion/deletion:

Mı D
X

dD1;:::;d max

d � P fı D d g;

where P fı D d g is the probability that the given indel has the length d . According to Benner et al.

(1993), this probability follows the Zipf distribution and does not depend on the evolution distance D. For

simplicity, we suppose that the total length of insertions and the total length of deletions equal T=2.

2.3.2. Deletions. The introduction of deletions was performed as a series of identical tries. At each try,

we randomly chose the starting position N of a new deletion and its length d . The value N was obtained

according to the uniform distribution, and d was obtained according to the Zipf distribution. If the distance

from the position N to the end of sequence or to the nearest previously inserted deletion is less than d ,

then the try was discarded. Similarly, the try was discarded if, after the introduction of the deletion of

length d , the total lengths of deletions became greater than T=2. Otherwise, the positions ŒN::N C d � 1�

are marked as deleted.
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TABLE 1. CORRESPONDENCE BETWEEN THE

EVOLUTIONARY DISTANCE IN PAM UNITS AND THE

AVERAGE PERCENTAGE OF IDENTICAL SYMBOLS (%ID)

IN THE INITIAL AND MUTATED SEQUENCES

PAM 10 60 100 200 300

%id 90 58 43 24 16

Note that, due to the discard of certain tries, the procedure leads to a distribution of deletion lengths that

differs from the Zipf distribution. To overcome this drawback, the procedure generating deletions uses the

modified probabilities obtained by the relaxation procedure (Samarskii and Goolin, 1989), rather than the

Zipf probability distribution (see Appendix). Finally, the accuracy of approximation of the obtained indel

length distribution with respect to the Zipf distribution is 3–4%.

2.3.3. Insertions. The positions and lengths of insertions were determined analogously to those of

deletions with two exceptions: (1) the deleted positions were not considered; and (2) the length d could

not be discarded, and thus there is no need to improve the length distribution. The inserted symbols were

generated analogously to the generation of the first sequence of a pair.

2.3.4. Substitutions. Substitutions were introduced after the introduction of deletions of insertions;

substitutions were allowed only in the non-deleted parts of the initial sequence. We have tested two ways

of generating substitutions.

In the first case, for each position allowed for the substitution, we generate the new symbol for

the position according to the PAM matrix corresponding to the evolutionary distance T (e.g., PAM60,

PAM100). In the second case, we use the matrix PAM1 instead, but repeat the substitution procedure

the required number of times (e.g., 60, 100). Both methods lead to the �5% difference between the

obtained substitution frequencies and the Dayhoff frequencies. The results below were obtained with the

first procedure.

Table 1 shows the correspondence between the evolutionary distance in PAM units and the average

percentage of identical symbols (%id) in the initial and mutated sequences. The data are in accordance

with the data presented in Dayhoff et al. (1978).

2.4. Alignment algorithm and its parameters

We have tested the SWA (1981) in the global version (Needleman and Wunsch, 1970; Waterman, 1989).

In all cases, we show the results obtained with substitution matrix PAM250 and gap penalty parameters

14 (gap opening penalty [GOP]) and 2 (gap elongation penalty [GEP]), which, on average, yield the best

results, as demonstrated by our experiments. We have also tested the “native” substitution matrix (e.g.,

PAM60 for the test set with an evolutionary distance of 60 PAM) and the corresponding gap penalties,

but the similarity between the algorithmic alignments and the GS in this case is approximately the same

(the difference is about 0.5%; Table 2), like with the “universal” parameter set {matrix PAM250, GOP D

14, GEP D 2}. Contrastingly, the alignment of distant proteins (e.g., with evolutionary distance 250 PAM)

with the “close” substitution matrix (e.g., PAM60) leads to significantly worse results.

3. RESULTS AND DISCUSSION

3.1. Quality of global SW-alignments

Figure 1 shows the histograms (empirical densities) of overall correctness of global SW alignments

with respect to the GS. The histograms for accuracy and confidence are very similar to those for overall

correctness (data not shown). The average values of overall correctness for two random alignments are

given for reference. To obtain the data for each initial random sequence, two systems of indels were
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TABLE 2. THE VALUES OF AVERAGE ACCURACY AND CONFIDENCE FOR THE GLOBAL VERSION

OF SMITH-WATERMAN ALGORITHM

Native matrix Matrix PAM250

Optimal penalties Optimal penalties

GOP D 14,

GEP D 2

Length PAM GOP, GEP Acc Conf GOP, GEP Acc Conf Acc Conf

200 60 13, 3 98.3 98.0 10, 1–2 98.0 97.7 97.7 97.4

200 60 14–15, 2 98.3 98.0

200 100 12–13, 2 95.3 94.9 10, 1 95.3 94.9 94.6 94.0

200 100 12, 1 95.2 95

200 200 15, 2 85.0 84.2 14, 1 85.4 84.7 85.1 84.1

200 200 17, 1 84.9 84.3

200 300 17, 2 71.2 70.1 15, 2 71.1 69.9 70.5 69.5

500 60 15–16, 1 98.6 98.5 10, 1–2 98.4 98.2 98.2 98.0

500 60 11–12, 1 98.4 98.2

500 100 14–16, 1 96.6 96.4 10–13, 1 96.5 96.2 96.3 95.9

500 200 18, 2 87.0 86.1 14, 1 87.1 86.5 87.1 86.2

500 200 19, 1 86.9 86.4

500 300 20, 2 74.3 73.2 18, 2 74.4 73.2 73.2 72.3

For each test set we have checked two substitution matrices: (1) the “native” one, e.g., PAM60 for the set with distance parameter

D D 60 PAM, and (2) PAM250. For each case, we show the results obtained with the gap penalties optimizing accuracy or confidence.

If the maximal value of a characteristic can be obtained with different penalties, we chose the penalty providing the best value for

another characteristic. If the best values of accuracy and confidence were achieved with the different sets of parameters, both pairs

of the parameters are listed.

independently generated in accordance with the procedure described above. Then, the similarity between

the alignments from each pair was calculated. Note that the quality of algorithmic alignment is much better

than the quality of random alignment even for an evolutionary distance of PAM300.

The general characteristics of the empirical densities are given in Tables 3 and 4. Table 3 contains

the average values of accuracy (Acc), confidence (Conf), and overall correctness (Corr) for all eight test

sets. We give the average value of overall correctness of two random alignments from the test set as a

background value. In contrast, Table 4 gives an impression of the shape of overall correctness density: all

the distributions are unimodal, and Table 4 describes their maxima.

Table 3 allows one to conjecture that the quality of global SW alignments depends only on the

evolutionary distance between the sequences and almost does not depend on their lengths (the values

for L D 500 are slightly greater). In contrast, the similarity between two random alignments significantly

depends on their lengths, and the values for L D 500 are significantly lower.

Unlike the average values, the shape of maxima does not depend on the evolutionary distance alone;

it also correlates with the lengths of the sequences. The maximal values for sequences of length 500 are

significantly greater than for sequences of length 200.

3.2. Detailed comparison of algorithmic and golden standard alignments

To get a deeper understanding of the interrelations between the SW and GS alignments, we have

considered the following characteristics: (1) %id, or the fraction of exact matches among the total number

of superimposed residues; (2) the total number of insertions and deletions (“indels”); (3) the average length

of an indel; and (4) the total length of indels.

Figure 2 represents the scatter-plots of the characteristics for evolutionary distances PAM60, PAM300,

and sequences of length 200. The data on the other test sets are similar and are not presented. The

cumulative data for all test sets are given in Tables 5 and 6. Table 5 contains the average values of the four

considered characteristics, presented separately for SW and GS alignments. Table 6 illustrates the ratios

of the indel characteristics of algorithmic and GS alignments.
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FIG. 1. Numbers of algorithmic alignments having a given overall correctness with respect to the corresponding

golden standard alignment (a,c) and numbers of pairs of random alignments having given similarity (b,d). The plots

a and b correspond to the sequences of length 200; the plots c and d correspond to the sequences of length 500. In all

diagrams, the similarity between the alignments is represented with the overall correctness measure.

TABLE 3. THE AVERAGE VALUES OF ACCURACY, CONFIDENCE,

AND OVERALL CORRECTNESS

SW vs. GS Two random

Length PAM %id Acc Conf Corr Corr

200 60 58 0.97 0.97 0.97 0.23

200 100 43 0.95 0.94 0.95 0.19

200 200 24 0.85 0.84 0.85 0.17

200 300 16 0.70 0.69 0.70 0.16

500 60 58 0.98 0.98 0.98 0.14

500 100 43 0.96 0.96 0.96 0.11

500 200 24 0.87 0.85 0.87 0.09

500 300 16 0.73 0.72 0.73 0.09

The average values of three measures of alignment quality (ACCuracy, CONFidence,

and overall CORRectness) of Smith-Waterman (SW) alignments with respect to the golden

standard (GS) alignments. For reference in the last column, we give the average overall

correctness of a random alignment with respect to another independent random alignment.

The data are given for all eight test sets (sequence lengths 200 and 500; PAM values 60,

100, 200, 300). The “%id” column contains average values of the sequence identity within

the generated test sets.
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TABLE 4. MAXIMAL VALUES OF THE HISTOGRAMS OF OVERALL CORRECTNESS

SW vs. GS Two random

Length PAM %id Range Maximum Range Maximum

200 60 58 0.9..1.0 99.1 0.1..0.2 29.1

200 100 43 0.9..1.0 89.4 0.1..0.2 34.2

200 200 24 0.8..0.9 48.9 0.1..0.2 37.0

200 300 16 0.7..0.8 31.3 0.1..0.2 37.7

500 60 58 0.9..1.0 100.0 0.1..0.2 40.2

500 100 43 0.9..1.0 99.2 0.0..0.1 50.6

500 200 24 0.8..0.9 61.2 0.0..0.1 62.5

500 300 16 0.7..0.8 42.0 0.0..0.1 63.7

Maximal values (“maximum”) of the histograms of overall correctness (Fig. 1) and the bins

corresponding to the maxima (“range”). The data are shown both for the comparison of Smith-

Waterman (SW) alignments and corresponding golden standard (GS) alignments, and for the

comparison of two random alignments (“two random”).

FIG. 2. Scatter-plots representing relations between different characteristics of the Smith-Waterman (SW) and

“golden standard” (GS) alignments. Each point corresponds to a pair of proteins; the abscissa represents the value

of a characteristic for the GS-alignment; and the ordinate represents the value for the SW-alignment. The following

characteristics are represented: %id (a); the total number of indels (b); and the average indel length (c). The upper

three plots give the data for the evolutionary distance of 60 point accepted mutations (PAM); the lower three plots

give the data for the evolutionary distance of 300 PAM.



386 POLYANOVSKY ET AL.

TABLE 5A. THE MEAN VALUES OF %ID OF

SMITH-WATERMAN (SW) AND GOLDEN STANDARD

(GS) ALIGNMENTS FOR DIFFERENT TEST SETS

%id

Length PAM SW GS Ratio

200 60 57.5 58.1 0.99

200 100 42.6 43.1 0.99

200 200 24.5 24.3 1.01

200 300 17.9 16.2 1.10

500 60 57.7 58.1 0.99

500 100 42.9 43.1 1.00

500 200 24.6 24.3 1.01

500 300 18.0 16.3 1.10

The scatter-plots (Fig. 2A) are symmetrical; i.e., the difference between %id of algorithmic and GS

alignments is insignificant. However, the plots in Figures 2B and 2C are asymmetric, which reflects the

difference in the number of indels and the total indel length in the considered groups of alignments.

The %id value is approximately the same for algorithmic and GS alignments; there is a slight increase

in the %id ratio for distant homologs (the case of PAM300). The standard deviation of the ratios is very

low (Tables 5A and 6).

The main difference between the SW and GS alignments is the number of indels (Tables 5B and 6). The

algorithmic alignments contain significantly fewer indels; the difference tends to grow with the growth of

evolutionary distance.

The average indel lengths of SW and GS alignments are approximately same; the lengths of SW

alignments are slightly greater. The standard deviations of ratios for all indel characteristics grow with

the growth of evolutionary distance; the deviations for sequences of length 200 are larger than those for

sequences of length 500 (Table 6).

In order to clarify the dependencies between the characteristics of indels (e.g., total number, mean length)

and the degree of alignment reconstruction, we divided the overall set of aligned pairs of sequences into

six subsets: the average length of indels in algorithmic alignments is less than in GS alignments (AL);

the average length of indels in algorithmic alignments is greater than in GS alignments (AG); the average

TABLE 5B. THE MEAN VALUES OF THE INDEL CHARACTERISTICS

(NUMBER, AVERAGE LENGTH, TOTAL LENGTH) OF SMITH-WATERMAN (SW) AND

GOLDEN STANDARD (GS) ALIGNMENTS FOR DIFFERENT TEST SETS

Number of indels Average length of indels Total length of indels

L PAM SW GS Ratio SW GS Ratio SW GS Ratio

200 60 4.85 5.69 0.85 2.17 2.11 1.03 10 12 0.83

200 100 5.49 6.85 0.80 2.43 2.34 1.04 14 16 0.88

200 200 5.78 7.98 0.72 2.61 2.51 1.04 16 20 0.8

200 300 6.10 8.54 0.71 2.67 2.58 1.03 16 22 0.73

500 60 9.37 10.58 0.89 2.92 2.83 1.03 25 30 0.83

500 100 10.81 12.72 0.85 3.26 3.14 1.04 35 40 0.88

500 200 12.67 16.06 0.79 3.41 3.36 1.01 45 55 0.82

500 300 13.46 16.12 0.83 3.29 3.47 0.95 45 55 0.82

Each “ratio” column contains the ratio of values of the respective Smith-Waterman (SW) over golden standard (GS) columns.
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TABLE 6. CORRESPONDENCE BETWEEN %ID, NUMBER OF INDELS, INDEL AVERAGE LENGTH, AND INDEL

TOTAL LENGTH FOR SW AND GS ALIGNMENTS

Algorithmic/true

%id (A)

Number of

indels (B)

Average length

of indels (C)

Total length

of indels (D)

L PAM Mean � Mean � Mean � Mean �

200 60 0.99 0.02 0.86 0.17 1.02 0.18 0.88 0.19

200 100 0.99 0.03 0.82 0.17 1.03 0.21 0.83 0.2

200 200 1.01 0.06 0.75 0.2 1.03 0.28 0.76 0.23

200 300 1.11 0.14 0.75 0.25 1.02 0.35 0.74 0.27

500 60 0.99 0.01 0.89 0.11 1.03 0.13 0.92 0.13

500 100 0.99 0.02 0.86 0.12 1.03 0.15 0.89 0.14

500 200 1.01 0.04 0.81 0.15 1.01 0.2 0.79 0.16

500 300 1.11 0.08 0.87 0.22 0.94 0.23 0.80 0.19

The table describes the behavior of four alignment characteristics for Smith-Waterman (SW) and golden standard (GS) alignments.

The characteristics are as follows: %id (A), number of indels (B), average length of indels (C), or total length of indels (D). For

each characteristic f , we give the mean value (“mean”) and standard deviations (“�”) of the ratio f (SW(S1 , S2))/f (GS(S1 , S2)) for

eight test sets. Here, SW(S1 , S2) and GS(S1 , S2) are SW and GS alignments of the test sequences S1 and S2 . Note, that, unlike in

Table 5, we give the average values of ratios, not the ratio of average values. Thus, the numbers are slightly different.

lengths of indels in algorithmic alignments and in GS alignments are equal (AE); the same for the number

of indels (NL, NG, NE).

Table 7A shows that the maximal number of sequence pairs falls into subset NG, characterized by the

number of indels in GS alignments greater than in algorithmic ones (70% for sequences of length 200 and

74% for sequences of length 500), and in subset AL, characterized by an inverse relation of mean lengths

of indels in GS and algorithmic alignments (42% for sequences of length 200 and 47% for sequences of

length 500).

The maximal similarity of algorithmic and GS alignments is attained at the equivalence between mean

lengths and the number of indels in algorithmic and GS alignments (Table 7B). The number of such

TABLE 7A. SUBSETS OF TEST SETS BY INDEL CHARACTERISTICS IN SW AND

GS ALIGNMENTS

Size of the subset,

% of the full test set
Indel

characteristics

Description

of the subset

Subset

code L D 200 L D 500

Average length of indels SW < GS AL 32.2 38.3

SW > GS AG 42.1 47.0

SW D GS AE 25.7 14.7

Number of indels SW < GS NL 70.6 74.0

SW > GS NG 3.8 7.4

SW D GS NE 25.6 18.5

Subsets of test sets meeting the following conditions: average length of indels in algorithmic

alignments is less than in golden standard alignments (AL); average length of indels in algorithmic

alignments is greater than in golden standard alignments (AG); average lengths of indels in

algorithmic alignments and in golden standard alignments are equal (AE); same for the numbers of

indels (NL, NG, NE). For each subset, we give its size as percentage of the full test set. Here, we

consider joint test sets obtained as unions of test sets with PAM60, 100, 200, 300, and the given

sequence length.
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TABLE 7B. INTERSECTIONS OF THE SUBSETS

Size of the subset,

% of the full test set Overall correctness, %
Description

of the intersection L D 200 L D 500 L D 200 L D 500

AL and NL 25.7 26.7 83.2 84.9

AL and NG 3.4 7.1 77.5 79.9

AG and NL 40.9 46.1 84.9 89.5

AG and NG 0.4 0.4 64.8 70.7

AE and NE 21.6 13.4 96.7 97.9

Intersections of the following pairs of subsets: AL and NL, : : : AE and GE. For each

intersection, we give (1) its size as percentage of the full test set (i.e., joint test sets obtained

as unions of test sets with PAM60, 100, 200, 300, and the given sequence length) and

(2) the average overall correctness over the intersection.

sequences decreases with the evolution distance increasing (data not shown). Most significant among

subset intersections (Table 7B) are the subsets of alignments with the number of indels less than that in

the GS alignment (AL and NL, AG and NL). The lowest correctness was observed for alignments with the

number of indels greater than that in GS alignments (AL and NG, AG and NG); independently from the

mean length of indels, this case is quite rare.

4. CONCLUSION

We have investigated the quality of global SW alignments (i.e., their similarity to the GS alignments);

the latter alignments were obtained through modeling in accordance with the evolution model described

in Dayhoff et al. (1978) and Benner et al. (1993). In other words, we have investigated if, for a protein

P1 and its descendant P2, the pair-wise sequence alignment of P1 and P2 can reconstruct the evolutionary

events leading from P1 to P2. As the next step, we plan to study the same question for alignments of

descendants P10 and P20 of the same ancestor. The problems are equivalent for the symmetric model of

evolution described in the above papers, but the asymmetric models (Jordan et al., 2005) can lead to a

significant difference in the results.

We have performed the computer experiments for sequences of length 200 and 500, and for evolutionary

distances from 60 to 300 PAM. Previous works (Sunyaev et al., 2004; Domingues et al., 2000) have

investigated local alignments and have used the 3D-structure-based alignments as a golden standard. The

3D structures of proteins are much more conservative than their sequences; however, they also can lead to

unpredictable errors in the estimation of quality of algorithmic alignments.

In line with the previous works, we have used two measures of alignment quality: (1) accuracy, reflecting

what part of the true alignment was correctly restored, and (2) confidence, which shows what part of the

algorithmic alignment coincides with the GS. Unlike local alignments, global ones have almost identical

characteristics; therefore, we mainly used the average characteristic called overall correctness. As intuition

suggests, the growth of PAM distance leads to a decrease in the alignment correctness and makes the

maxima of the corresponding distributions less sharp. The length of compared sequences almost does not

affect the average alignment correctness. The dispersion of alignment correctness for the test sets of length

500 is significantly less than for the sets of length 200 (Table 4).

The main difference between the GS and algorithmic alignments is the number of gaps; the average

lengths of gaps are approximately the same. The total length of indels for all PAM distances is less in

algorithmic alignments than in GS ones. This is caused by a substantial decrease in the number of indels

in algorithmic alignments along with an insignificant increase in the mean length of indels. The more

distinctly this trend is seen for a given pair of proteins, the greater the difference between their algorithmic

and GS alignments.
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TABLE 8A. THE DISTORTION OF ZIPF DISTRIBUTION

AS A CONSEQUENCE OF SIEVE EFFECT

Length 200 200 200 500 500 500

PAM 50 100 200 50 100 200

kf � Zk=kZk 0.31 0.29 0.26 0.25 0.21 0.19

f , obtained distribution of indel lengths; Z, Zipf distribution; kXk D
P

jxij, norm.

TABLE 8B. ERRORS OF APPROXIMATION OF EMPIRICAL INDEL LENGTH

DISTRIBUTIONS WITH ZIPF DISTRIBUTION

PAM 6 10 19 35 48 87

kE � Zk=kZk 0.31 0.22 0.14 0.15 0.12 0.10

E, empirical distribution of indel lengths; Z, Zipf distribution; kXk D
P

jxij, norm.

The relatively low number of indels in the algorithmic alignments follows from the form of the target

function of the SW algorithm. One possible way to overcome the drawback is to penalize the deviation of

the number of indels from a given desired number, rather than the appearance of an indel.

In our further work, we plan to implement the proposed approach to investigate the local alignments

and their relations to the global ones. To do this, we will place the similar sequences into a much longer

random environment. It seems to be interesting to compare the effectiveness of global and local approaches

for different sizes of environment and different lengths of initial similar sequences.

5. APPENDIX

As a result of elimination of extended deletions during introducing (so called sieve effect), the short

deletions will be overrepresented in final distribution; i.e., the obtained distribution differs from Zipf

distribution (Table 8A). Following Benner et al. (1993), errors of approximation of empirical distributions

of indel lengths with Zipf distribution are shown in Table 8B.

Thus, for PAM of >50, the distortion of distribution becomes greater than the approximation distribution

error. With the aim of compensating for this distortion, correction of the actual indel length distribution

vector can be undertaken.

Notations: X D .x1; : : : ; xn/, or vector of indel lengths distribution

F.X/ D .f 1.X/; : : : ; f n.X//, or function of deletion introduction

Problem: Find X� W F.X�/ � Z

For finding X�, the iterative method of relaxation (Samarskii and Goolin, 1989) was applied:

Let us consider the sequence of vector X approximations:

X iC1 D X i , or �F.X i /,

X i , or current value of lengths distribution,

0 < � < 1, or constant multiplier,

X0 D Z.
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Procedure of vector X approximation:

1. Introducing of indels in original sequence, X0 D Z.

2. Computation of generated distribution of indel lengths X1.

3. Check the condition: kF.X1/ � Zk < ", where kXk D
P

jxj j, or vector norm, and " > 0, or small

value.

If condition is not satisfied, then

4. Correction of vector X : X iC1 WD X i � �F.X i /,

Continue step 1.
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