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ABSTRACT

Motivation:Evaluatingall possible internal loops is oneof the keysteps

in predicting the optimal secondary structure of an RNAmolecule. The

best algorithm available runs in time O(L3), L is the length of the RNA.

Results:We propose a new algorithm for evaluating internal loops, its

run-time is O(M�log2L), M < L2 is a number of possible nucleotide

pairings. We created a software tool Afold which predicts the optimal

secondary structure of RNAmolecules of lengths up to 28 000 nt, using

a computer with 2 Gb RAM. We also propose algorithms constructing

sets of conditionally optimal multi-branch loop free (MLF) structures,

e.g. the set that for every possible pairing (x, y) contains an optimal

MLF structure in which nucleotides x and y form a pair. All the

algorithms have run-time O(M�log2L).
Availability: Executables of Afold software tool, precompiled for Linux

and Windows, are available at ftp://ftp.ncbi.nlm.nih.gov/pub/ogurtsov/

Afold.

Contact: MRoytberg@impb.psn.ru
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1 INTRODUCTION

Knowing the optimal, i.e. the one possessing the minimal possible

free energy, secondary structure of an RNA molecule is crucial for

understanding RNA function (Zuker and Stiegler, 1981; Zuker and

Sankoff, 1984; Hofacker et al., 1994; Lyngsø et al., 1999;

McCaskill, 1990). Since the pioneering works by Tinoco et al.
(1971, 1973), methods for computational prediction of such struc-

tures (usually, pseudoknot-free) have been improved in several

ways. First, more realistic energy functions become available.

While early papers (Nussinov and Jacobson, 1980) estimated

free energy simply by the number of paired nucleotides, a much

more detailed nearest-neighbor model (NNM, Jaeger et al., 1989) is

used now. This model treats an RNA structure as a composition of

loops of different types, i.e. stacking pairs, bulges, hairpins, internal

loops and multi-branch loops (Supplementary Fig. S1). NNM

includes rules which assign the energy to a loop of any of these

types, with the energy of the whole structure being the sum of

energies of its constituent loops. Parameters of NNM have been

refined experimentally (Xia et al., 1998; Mathews et al., 1999;

Zuker et al., 1999).

Second, a variety of target objects are sought by contemporary

algorithms. Among them are the set of all base pairs that occurs in

suboptimal structures (Zuker, 1989), the set of suboptimal structures

(Zuker, 1989; Wuchty et al., 1999), partition function and probab-

ilities of specific nucleotide pairings (McCaskill, 1990; Hofacker

et al., 2004), and the optimal structure containing no multi-branch

loops (Eppstein et al., 1992; Larmore and Schieber, 1991). The

algorithms for finding these objects are based on the appropriate

versions of dynamic programming (DP) approach. Surprisingly,

analysis of internal loops, i.e. loops containing only two base pair-

ings and two regions of unpaired nucleotides between them, turned

out to be the most difficult problem. The algorithm evaluating all

internal loops of an RNA molecule of length L in time O(L3) was

proposed by Lyngsø et al. only in 1999. Earlier solutions were either

O(L4) or O(L2�D2), where D is a maximal length imposed on the

internal loop size.

Searching for the optimal multi-branch loop-free (MLF) structure

is closely related to evaluation of all possible internal loops. Eppstein

et al. (1992) proposed an algorithm that finds the optimal MLF

structure using a sparse dynamic programming (SDP) approach.

The algorithm has run-time O(M�log2L) and work space O(M),

where M is the number of possible combinations of paired nucle-

otides. Since M < L2, this implies O(L2�log2L) time bound.

However, this elegant algorithm had no significant impact on

tools for predicting RNA structures because it requires the internal

loop energy to be a convex or a concave function of the sum of

lengths of the two unpaired regions which constitute the loop. In

contrast, energy functions used in the current most popular model,

NNM, depend on both the sum and the difference of these two

lengths. Also, it is often necessary to find not only the optimal

MLF structure, but a set of all plausible MLF structures.�To whom correspondence should be addressed.
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The aim of this work is to overcome these limitations. First, we

propose algorithms for evaluating internal loops. The algorithms

have run-time O(M�log2L), which improves the time bound of

Lyngsø et al. (1999) and are applicable to internal loop energy

functions which conform to the NNM model, i.e. we assume that

penalty F for an internal loop depends on two variables,

Fðs‚dÞ ¼ f LenðsÞ þ fDiffðdÞ‚

where length penalty fLen(s) is a concave function of the total

number s of unpaired nucleotides in the loop and asymmetry penalty

fDiff(d) is a function of the difference d between the lengths of two

unpaired regions which constitute the loop.

The algorithms exploit the fact that fDiff(d) differs from a constant

only at small number of points [fDiff(d) ¼ const when d is large

enough]. Thus, evaluation of the internal loop energy can be divided

in two parts: one part corresponds to large values of d and thus we

can ignore fDiff(d); the other relates only to narrow ‘strips’ corres-

ponding to small values of d. For each of the parts we propose two

algorithms calculating energy terms: one algorithm is based on SDP

and implements divide and conquer procedure; the other uses can-

didates list paradigm and avoid divide-and-conquer procedure.

Second, we apply this approach to finding sets of conditionally

optimal MLF structures and outline possible ways of using

such sets.

The SDP-based algorithms are of the same order of time and

space complexity as algorithm of Eppstein et al. (1992). For the

candidate list paradigm we cannot prove the final run-time bound,

however empirically it gives even better results.

The paper is organized as follows. First we describe searching for

internal loops as a part of an algorithm which finds the optimal

structure for an RNA molecule, according to NNM. After this, we

apply our approach to develop an algorithm which finds the optimal

MLF structure. Finally, we present algorithms for finding sets

PAIRED and HAIRPIN of conditionally optimal MLF structures.

We shall use the following notations. We fix the RNA sequence

of length L and the set U of M allowed combinations of paired

nucleotides within the RNA. The paired nucleotides are represented

as integer pairs (p, q); p < q. All sets of base pairs refer to dot-matrix

representation, where the pairing (p, q) is represented by the point

(L� p + 1, q) on the right-upper triangle of the L · L matrix (Fig. 1).

U(A, B) � U denotes the set of all allowed base pairs (p, q) with

A + 3 � p < q � B � 3. For each B 2 [1, L] a set ROWB consists of

all allowed base pairs (p, B). The r-th diagonal is a set of points

DIAGr ¼ {(p, q) j (p, q) 2 U, p + q ¼ r}, and for some fixed

parameter width the r-th strip is a union of diagonals STRIPr ¼
{(p, q) 2 U j r � width � p + q � r + width}.

The optimal RNA structure within a given class of structures is

the structure with the minimal possible energy. IStruct(A, B; p, q) is

the optimal structure in which paired nucleotides at positions A and

B, p and q (A < p < q < B), form an internal loop, and (A, B) is the

closing pair of the structure. IStruct(A, B) is the optimal structure

among IStruct(A, B; p, q) for all p, q.

2 ALGORITHM

2.1 Finding internal loops during construction of the

optimal RNA structure

Algorithms for predicting RNA secondary structures according

to NNM (Zuker and Sankoff, 1984; Hofacker et al., 1994;

Lyngsø et al., 1999) follow the framework given in Supplementary

algorithm S1. An algorithm looks over all possible base pairs row

by row in the ascending order of their row numbers B 2 [1, L],

calculating optimal structures of different types for each closing

Fig. 1. Dot-matrix representation of possible base pairings within the secondary structure of an RNA molecule with sequence ‘UACGCACCAGAGUGG’

(L ¼ 15). A putative pair (p, q) is represented by ‘+’ at position (L� p + 1, q), as if we place one copy of RNA sequence along the x-axis from right to left

and the other one along the y-axis from bottom to top. The sets STRIPr (shadowed area) and DIAGr (dark grey cells) for r¼ 15 are highlighted. For a base pair

(A, B) ¼ with A + B ¼ r the value fdiff(A, B; x, y) differs from the base_level only if (x, y) 2 STRIPr.
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base pair (A, B) 2 U, A 2 [1, B� 1]. Consider the following optimal

internal loop problem.

Problem 1. For all the allowed base pairs (A, B) 2 U find the

optimal structure IStruct(A, B) with the closing pair (A, B) within

the framework of the algorithm OptimalRNA, (Supplementary

algorithm S1, line 2.5). We assume that energies DG(x, y) of optimal

structures with the given closing loop pair (x, y) are already

known before the call InternalLoopRow(B) for all (x, y) 2 U
with y < B.

We propose an algorithm solving this problem with NNM energy

functions, i.e. give an implementation of the function Internal-

LoopRow. We describe only how to calculate the energy of an

optimal internal loop, which requires filling on the right-upper tri-

angle of the L�L matrix (Fig. 1). The subsequent reconstruction of

the optimal RNA structure only involves tracing back the corres-

ponding graph, which realistically contains only a small number of

branching points, each describing a multi-branch loop, and does not

significantly increase either run-time or the needed space. Thus, this

reconstruction will not be described. Also, we do not consider

analyses of hairpins and simple loops, i.e. stacking pairs, bulges

and internal loops with small distances between the opening and

closing base pairs (Mathews et al., 1999; see also Supplementary

Fig. S1).

The energy DGIStruct(A, B) of the structure IStruct(A, B) with the

given closing pair (A, B) can be determined as

DGIStructðA‚BÞ
¼ min fDGIStructðA‚B; x‚yÞ j ðx‚yÞ 2 UðA‚BÞg
¼ min fDGðx‚yÞ þ DGInternal_LoopðA‚B; x‚yÞ j ðx‚yÞ 2 UðA‚BÞg‚

ð1Þ

where DGIStructl(A, B; x, y) is the energy for IStruct(A, B; x, y). Here

DG(x, y) is the minimal energy of all structures (including those

containing multi-branch loops) with the closing pair (x, y); with

the termination base pairing energy is included to DG(x, y).

DGInternal_Loop(A, B; x, y) is a penalty for two unpaired regions

[A + 1, x � 1] and [y + 1, B � 1], with lengths dA ¼ x � A � 1

and dB ¼ B � y � 1, respectively. The penalty function

DGInternal_Loop(A, B; x, y) is defined as

DGInternal_LoopðA‚B; x‚yÞ
¼ f LenðdAþ dBÞ þ fDiffðdA� dBÞ
¼ f LenððB � AÞ � ðy � xþ 2ÞÞ þ fDiffððBþ AÞ � ðyþ xÞÞ:

ð2Þ

The function fLen(s) is convex (Supplementary Fig. S2), and can be

approximated by a logarithmic function. The function fDiff(d) is

defined as

fDiffðdÞ ¼ base_level‚ if j d j � width;
fDiffðdÞ ¼ ðbase_level=widthÞ � j d j ‚ if j d j < width: ð3Þ

Here, base_level determines the value fDiff(d) for large enough

values of j d j , and width determines the range of values of d,

where fDiff (d) is not equal to base_level. Thus, for all d, fDiff(d)

� base_level and fDiff(d) differs from base_level only in 2�width �
1 points, i.e. for d ¼�width + 1, . . . , 0, . . . , width�1. In the current

version of NNM, the values of the constants are base_level ¼ +3.00,

width ¼ 6. Thus, 2�width � 1 ¼ 11. We will exploit the fact that

this value is small relative to the total RNA length L. Let DGr(x, y)

be the sum

DGrðx‚yÞ ¼ DGðx‚yÞ þ f Diff ðr � ðyþ xÞÞ: ð4Þ

Using (2)–(4), we can transform (1) as follows

DGIStructðA‚BÞ ¼ min f
min fDGðx‚yÞ þ f LenððB � AÞ � ðy � xþ 2ÞÞ þ base_level

j ðx‚yÞ 2 UðA‚BÞg‚

min fDGðx‚yÞ þ f LenððB � AÞ � ðy � xþ 2ÞÞþ
fDiffððBþ AÞ � ðyþ xÞÞ j ðx‚yÞ 2 STRIPAþBg‚

g ¼ min f
base_level þ min fDGðx‚yÞ þ f LenððB � AÞ � ðy � xþ 2ÞÞ

j ðx‚yÞ 2 UðA‚BÞg‚

min fDGAþBðx‚yÞ þ f LenððB � AÞ � ðy � xþ 2ÞÞ
j ðx‚yÞ 2 STRIPAþBg:

g
ð5Þ

Proceeding the ROWB, our algorithm first calculates

DGMainðA‚BÞ ¼min fDGðx‚yÞ þ f LenððB�AÞ
�ðy�xþ 2ÞÞ j ðx‚yÞ 2 UðA‚BÞg

ð6Þ

for all (A, B) 2 ROWB. After this,

DGStripðA‚BÞ ¼min fDGAþBðx‚yÞ þ f LenððB � AÞ
� ðy � xþ 2ÞÞ j ðx‚yÞ 2 STRIPAþBg

ð7Þ

is calculated, and finally the desired minima (5) are found.

Therefore, function InternalLoopRow(B) is computed as

shown in Supplementary algorithm S2. InternalLoopMainRow(B)

calculates values of DGMain(A, B) for all (A, B) 2 ROWB. Internal-

LoopStripRow(B) calculates values of DGStrip(A, B), and Internal-

LoopFinalRow(B) calculates DGIStruct(A, B) according to (5).

InternalLoopMainRow(B) and InternalLoopStripRow(B) also

support the necessary data structures described below.

Calculating (6) and (7), we exploit convexity of the function

fLen(s). Note that each base pair (x, y) belongs only to

2�width � 1 strips. Therefore the total time to calculate values

DGA+B(x, y) for all (A, B) and (x, y) 2 STRIPA+B is

TDIAG ¼ c1 � width � M: ð8Þ

To calculate (6), we can use an appropriate modification of the

SDP algorithm of Eppstein et al. (1992). The total run time of

the algorithm is

TMAIN ¼ c2 � M � log2 L ð9Þ

and the additional space needed is O(M).

Another way to calculate (6) is to store candidate lists, i.e. for

each x 2 [1, L] to store values DG(x, y) for all pairs (x, y) that can

give maximum in (6) for some (A, B) with B greater than the current

row number B�. The naive upper bound for this case is O(M2).

However, our experiments show that each list contains in average

2–3 items (26 in worth case) for L from 1 500 to 17 000 that

(in combination with owner technique analogous to SDP) leads

to empirical run-time bound

TMAIN_EMP ¼ c2_emp � L2 � log L

with very low constant c2_emp (section 3 ‘Implementation’, Fig. 3).

Analysis of internal loops in the RNA structure
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To calculate (7) we can also use the SDP algorithm that leads to

the aggregate run-time

TSTRIP ¼ c3 � width � M � log2 L ð10Þ

Another possibility is to take advantage of the structure of the set

DIAGr of base pairs sharing the same strip STRIPr and avoid the

divide and conquer procedure. This gives a better time

TSTRIP ¼ c4 � width � M � log L ð11Þ

at the cost of slightly larger used space. However, in both cases the

space needed is O(M). The SDP-based algorithms to calculate (6)

and (7) are given in the Supplementary Section 1; the algorithms

will be referred to as E-algorithm and ES-algorithms below. The

candidate list based algorithms are described in the next sub-section.

Overall [(8)–(11)], we obtain run-time upper bound

O(width�M�log2L) if we use the SDP algorithms both to calculate

(6) and (7), and O(M�log2L + width�M�logL) if we do not imple-

ment the divide and conquer approach to calculate (7). In both cases

the space needed is O(M).

2.2 Functions InternalLoopStripRow,

InternalLoopMainRow and candidate

lists preliminary remarks

Here we present the algorithms to calculate values DGStrip(A, B)

(the G-algorithm) and DGMain(A, B) (the M-algorithm), that use

global candidate lists and unlike the SDP avoid divide-and-conquer

procedure.

First, we consider the algorithm calculating DGStrip(A, B), the

G-algorithm. The G-algorithm is logL times faster than

ES-algorithm. The work space of G-algorithm is O(width�M),

i.e. of the same order as of ES-algorithm; the work space of

G-algorithm exceeds that of ES-algorithm only by a term propor-

tional to L (cf. Hirschberg, 1975). Then we consider the algorithm

calculating DGMain(A, B), the M-algorithm.

Fix a row B 2 [1, L] and a diagonal r, r > B. Let us define the set of

base pairs STRIPPREDr(B) as follows (Fig. 2):

STRIPPREDrðBÞ¼fðx‚yÞ j ðx‚yÞ 2 STRIPr & r � B < x < y < Bg:

The set STRIPPREDr(B) consists of all base pairs that can be

related to (r � B, B) within the calculation of DGStrip(r � B, B)

according to (7).

Letðp‚qÞ 2 DIAGr‚q � B‚r ¼ pþ q:

We define OWNERr,B(p, q) 2 STRIPPREDr(B) as a minimal

element according to the following ordering:

ðx‚yÞ<�ðx0‚y0Þif
ðaÞDGIStructðp‚q;x‚yÞ < DGIStructðp‚q;x0‚y0Þ‚or

ðbÞDGIStructðp‚q;x‚yÞ ¼ DGIStructðp‚q;x0‚y0Þ & y� x < y0 � x0‚or

ðcÞDGIStructðp‚q;x‚yÞ ¼ DGIStructðp‚q;x0‚y0Þ & y�x¼y0�x0 & y < y0:

We say that (x, y) 2 STRIPPREDr(B) is an (r, B)-candidate if

ðx‚yÞ ¼ OWNERr‚Bðp‚qÞ

for some (p, q) 2 DIAGr, q � B. By definition, for any (A, B) 2
ROWB

DGIStructðA‚BÞ ¼ DGIStructðA‚B;u‚vÞ‚

where (u, v) ¼ OWNERA + B, B(A, B). The idea of the G-algorithm is

to store lists CANDr,B of (r, B)-candidates and update them from

CANDr,B to CANDr,B+1 within the processing of ROWB.

Let (r, B)-home HOMEr,B(x, y) of the (r, B)-candidate (x, y) be a

set of all q such that B � q < r and (x, y) ¼ OWNERr,B(r � q, q).

Statement 1. Let (x1, y1), . . . , (xn, yn) be all (r, B)-candidates,

ordered by decrement of di ¼ yi � xi. Then,

(1) All values y1� x1, . . . , yn� xn are different, i.e. y1� x1 > � � � >
yn � xn;

(2) DGr(x1, y1) > � � � > DGr(xn, yn);

Fig. 2. The set STRIPPREDr(B) (shadowed) for B ¼ 12 and r ¼ 15.
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(3) there are valuesT0¼B�1<T1< � � � <Tn� 1<Tn¼L such that

HOMEr,B(xi, yi) ¼ [Ti � 1 + 1, Ti].

Proof. In Supplementary Section 3.

2.2.1 Description of G-algorithm Let CANDr,B be a list of

5-tuples

fCi ¼ < Ci:x‚Ci:y‚Ci:dG‚Ci:Tmin‚Ci:Tmax > g‚ i ¼ 1‚ . . . ‚n‚

where (xi, yi) ¼ (Ci.x, Ci.y) are all (r,B)-candidates; y1� x1 > � � � >
yn�xn; Ci.dG ¼ DGr(xi, yi); [Ci.Tmin, Ci.Tmax] ¼ HOMEr,B (xi, yi),
i.e. Ci.Tmin ¼ Ti�1+1, Ci.Tmax ¼ Ti; Ti are defined in Statement 1.

G-algorithm utilizes lists CANDr,B; to store the lists the algorithm

uses the array VAR_CANDIDATESTRIP of length 2�L � 1.

Before processing of ROWB, an element VAR_

CANDIDATESTRIP[r] contains the set CANDr,B. Unlike the

array VAR_ACTIVESTRIP, which is local, i.e. is reinitialized

at each call of InternalLoopStrip_ES(B), the array VAR_

CANDIDATESTRIP is the global data structure. This forces us

to change the framework of OptimalRNA algorithm (Supplement-

ary algorithm S1) to the modified algorithm OptimalRNA_G

(Supplementary algorithm S3A). The elements of VAR_

CANDIDATESTRIP are initialized with empty lists only once

during the preprocessing step of the algorithm OptimalRNA_G.

The implementation of the G-algorithm consists of two functions:

InternalLoopStripRow_G (Supplementary algorithm S3B) and

UpdateCandidate. Analogously to InternalLoopStripRow, it stores

the calculated value DGStrip(A, B) in VAR_STRIPWORK[A, B].

The function GetFirst(r) gets the first element C ¼ (C.x, C.y,

C.dG, C.Tmin, C.Tmax) of the list VAR_CANDIDATESTRIP[r] ¼
CANDr,B. According to Statement 1, (C.x, C.y) ¼ OWNERr,B

(r � B, B). Thus, the value DGStrip(A, B), where A¼r�B, can be

calculated as

DGStripðA‚BÞ ¼ DGAþBðC:x‚C:yÞ
þ f LenððB�AÞ�ðC:y�C:x þ 2ÞÞ

The function UpdateCandidate is presented in Supplementary

algorithm S4, its subroutine IncludeCandidate is given in Supple-

mentary algorithm S5. A call UpdateCandidate(B) updates lists

VAR_CANDIDATESTRIP[r] from CANDr,B to CANDr,B+1

according to newly calculated values DG(A, B) for (A, B) 2 ROWB.

Statement 2.

(1) The function InternalLoopStripRow_G(B) correctly calculates

values DGStrip(A, B) within the algorithm OptimalRNA_G.

(2) The total run-time of calls InternalLoopStripRow_G(B) and

UpdateCandidate(B) within the work of the algorithm

OptimalRNA_G (Supplementary algorithms S3–S5) is

O(width�M�logL), fLen(s) is assumed to be a convex function,

its value can be calculated in constant time.

(3) If fLen(s) is logarithmic function, then the total run-time of calls

InternalLoopStripRow_G(B) and UpdateCandidate(B) within

the work of the algorithm OptimalRNA_G (Supplementary

algorithms S3–S5) is O(width2�M), the value fLen(s) is sup-

posed to be calculated in constant time.

(4) The workspace of the OptimalRNA_G is O(L) + O(width�M).

Proof. In Supplementary Sections 3 and 4.

2.2.2 The M-algorithm The M-algorithm is based on the obser-

vation, that the DG(A, B) has a negative correlation with B � A. In

other words, we expect better (lower) DG for longer sequences.

Thus, for every A (A 2 [1, B]) we construct and maintain the list

of base pairs (A, Y) that have ascending order by Y and DG(A, Y).

Using the fact that function fLen(s) increases monotonously, it is

easy to prove the following statement.

Statement 2M. If A < x < y1 < y2 < B and DG(x, y1) > DG(x, y2),

then DGInternal_Loop(A, B; x, y1) > DGInternal_Loop(A, B; x, y2) for every

pair (A, B). Indeed,

DGInternal_LoopðA‚B; x‚y1Þ¼DGðx‚y1Þþf LenððB�AÞ�ðx�y1þ2ÞÞ
> DGðx‚y1Þþf LenððB�AÞ�ðx�y2þ2ÞÞ
> DGðx‚y2Þþf LenððB�AÞ�ðx�y2þ2ÞÞ
¼ DGInternal_LoopðA‚B; x‚y2Þ:

We say that base pair (x, y) where x < y < B is B-weak if there is y0 <
B such that y0 > y and DG(x, y0) < DG(x, y); otherwise the base pair

(x, y) is called B-strong. The above statement shows, that weak base

pairs (i.e. base pairs with smaller lengths and higher DG) can be

excluded from evaluation for all (A, B). For each x we construct and

maintain candidate lists consisting of all B-strong pairs (x, y). Our

tests show that for sequence of 1 500–17 000 nt a candidate list

contains on average 2 pairs and is never longer than 26 pairs (Sup-

plementary Table S1).

Analogous to G-algorithm, the M-algorithm works out all

allowed base pairs row by row. According to Statement 2M, to

proceed a row B we have to look out only �2�B base pairs that

are members of the above candidate lists. This can be done using

SDP-like technique in time O(L�logL) that leads to the total run-

time O(L2�logL).

2.3 Multi-branch loop-free structures

2.3.1 Optimal multi-branch loop-free structures The MLF

structure is a structure containing only hairpins, stacking pairs,

bulges and internal loops. According to the NNM, the energy

DGMLF(A, B) of the optimal MLF structure with a given closing

pair (A, B) can be found from the recursive equation:

DGMLFðA‚BÞ ¼min fDGHairpinðA‚BÞ‚DGSimpleðA‚BÞ‚
min fDGMLFðx‚yÞ þ DGInternal_LoopðA‚B; x‚yÞ

j ðx‚yÞ 2 UðA‚BÞgg:
ð12Þ

Here DGHairpin(A, B) is the energy of the hairpin loop with the

closing pair (A, B), DGSimple(A, B) is the minimal energy of a

structure with the closing pair (A, B), where (A, B) closes a ‘simple

loop’ i.e. a stacking pair, or a bulge, or an internal loop where one

of the unpaired fragments has 1 or 2 nt. The last term in the for-

mula (12) corresponds to internal loops of general form. The

DGInternal_Loop(A, B; x, y) is given by formula (2), the function

fDiff(d) differs from constant only if

j d j < width‚ ð13Þ

here width is a constant. For the NNM, width ¼ 6. Thus, we come to

the Problem 2.

Problem 2 (OMLF problem). Given: an RNA sequence of length

L and a set of allowed base pairs U of size M.
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The goal: Find the optimal MLF secondary structure according to

the recursive Equation (12) and the DGInternal_Loop function meeting

conditions (2) and (13).

Let the algorithms MLF_E and MLF_G be the algorithms

obtained from the algorithms OptimalRNA (Supplementary algo-

rithm S1) and OptimalRNA_G (Supplementary algorithm S3A)

respectively by deletion of the lines related to multi-branch

loops (line 2.4). The algorithm MLF_E in detail is given in the

Supplementary Section 6.

The following statement generalizes the result of Eppstein et al.
(1992).

Statement 3. The algorithms MLF_E and MLF_G solve

the OMLF problem. The run-times of the algorithms are

O(M�width�log2L) and O(M�logL�(width + logL)) respectively

and the work space are O(M�width).

Proof follows from the previous Algorithm sections.

2.3.2 Conditionally optimal multi-branch loop-free structures In

the course of their work, algorithms MLF_E and MLF_G, for each

base pair (A, B) 2 U, find the MLF structure MLF_Close(A, B) that

is optimal among the structures with the closing pair (A, B). Below,

we consider other types of ‘conditionally’ optimal MLF structures.

Let MLF_Hairpin(A, B) be the optimal MLF structure having

(A, B) as the most internal loop (‘hairpin’ base pair), i.e. (A, B)

is a closing pair of the only hairpin of the structure. Let MLF_BP be

the optimal MLF structure containing the base pair (A, B).

Problem 3. (OMLF_H problem). Given: an RNA sequence of

length L and a set of allowed base pairs U of size M.

The goal: For each allowed base pair (A, B) find the conditionally

optimal structure MLF_Hairpin(A, B) according to the recursive

Equation (12) and the Penalty function meeting conditions (2)

and (13).

Problem 4. (OMLF_BP problem). Given: an RNA sequence of

length L and a set of allowed base pairs U of size M.

The goal: For each allowed base pair (A, B) find the conditionally

optimal structure MLF_BP(A, B) according to the recursive Equation

(12) and the Penalty function meeting conditions (2) and (13).

Below we present algorithms solving Problems 3 and 4 with

the same time and space complexities as that of algorithms

MLF_E and MLF_G.

2.3.3. Conditionally optimal MLF structures with a given hairpin loop
Statement 4. Suppose that function DGR(x, y), (x, y) 2U meets the

following recursive equation [definition of DGInternal_Loop(A, B; x, y)

in (2), sub-section 2.1]

DGRðx‚yÞ ¼ min f0‚

min fDGRðA‚BÞ þ DGSimpleðA‚B; x‚yÞ j ðx‚yÞ
2 UðA‚BÞ; ðA‚BÞ and ðx‚yÞform a simple loopg‚

min fDGRðA‚BÞ þ DGInternal_LoopðA‚B; x‚yÞ j ðx‚yÞ
2 UðA‚BÞ; ðA‚BÞandðx‚yÞ

form a general internal loopgg: ð14Þ

Then, the energy DGR
Hairpin(x, y) of the structure MLF_Hairpin(x, y)

can be found from

DGR
Hairpinðx‚yÞ ¼ DGRðx‚yÞ þ DGHairpinðx‚yÞ‚

where DGHairpin(x, y) is the energy of the hairpin loop with the

closing pair (x, y).

Proof. It follows from the definition of the energy of an RNA

structure in the NNM model. Informally, DGR(x, y) is the optimal

energy of the exterior part of the MLF structure containing the

pairing (x, y), i.e. of the part outside of the pairing (x, y). In

turn, the value DGMLF(A, B) is the optimal energy of the interior

part. The recursion (12) considers base pairs (p, q) of a MLF struc-

ture from the pairs with the minimal distance q� p to the pairs with

the maximal distance. The recursion (14) goes in the opposite dir-

ection. Thus, the desired proof can be obtained by induction.

Statement 5. There are modifications MLF_EH and MLF_GH of

the algorithms MLF_E and MLF_G that solve the OMLF_Hairpin

problem with the same time and space complexity as initial

algorithms solve the MLF problem.

Proof. For the sake of brevity, we restrict ourselves with informal

explanations. The recursion (14) is the ‘reversed’ recursion for the

recursion (12), see statement 4. Therefore, we can reduce the com-

putation of DGR(x, y) to the computation of DGR
Main(x, y) and

DGR
Strip(x, y), which are analogous to DGMain(x, y) and DGStrip

(x, y). The values DGR
Main(x, y) and DGR

Strip(x, y) in turn can be

computed using appropriate modifications of E-algorithm, ES-

algorithm, and G-algorithm.

The relation between recursions (12) and (14) can be illustrated

with mappings of the set of allowed pairs U into the square [1, L]�
[1, L]. The mappings map base pairs of a given MLF structure into

the increasing chain of points. The recursion (12) corresponds to the

mapping

gðp‚qÞ ¼ ðL � pþ 1‚qÞ‚

i.e. the nucleotide pair (p, q) is represented with the point (x, y) ¼
(L � p + 1, q) (Supplementary Fig. S3). All base pairs thus cor-

respond to the points of the upper-right triangle; the distance q � p
corresponds to the distance from the point g(p, q) to the diagonal.

The MLF structure, consisting of the base pairs (p1, q1), . . . , (pn, qn),
pn < � � � < p1 < q1 < � � � <qn, corresponds to the increasing chain

of points g(p1, q1) ¼ (p1, q1), . . . , g(pn, qn) ¼ (xn, yn), where

x1 < . . . < xn‚ and y1 < . . . < yn

The last point of the chain corresponds to the closing pair of the

MLF structure.

The recursion (14) corresponds to the mapping

gRðp‚qÞ ¼ ðp‚L � qþ 1Þ

It maps nucleotide pairs into the bottom-left triangle. An increasing

chain corresponds to a MLF structure, considered in the opposite

direction, i.e. from the most distant base pairs to the closest ones.

The increasing chain {(x1, y1), . . . , (xn, yn)} corresponds to the

MLF with the closing pair (x1, L � y1 + 1) and the hairpin pair

(xn, L � yn + 1).

Thus, in both cases we can reduce the search for the optimal

MLF structure to the search for the least weight increasing chain

(Eppstein et al., 1992).

2.3.4 Locally optimal multi-branch loop-free structures contain-
ing a given base pair Solution of the Problem 4 is based on the

following statement.

Statement 6. Let (A, B) 2 U and {(x1, y1), . . . , (A, B), . . . , (xn, yn)}
be an optimal MLF structure containing the base pair (A, B),

x1 > � � � > A > � � � > xn, and y1 < � � � < B < � � � yn, then

{(x1, y1), . . . , (A, B)} is an optimal MLF structure with the given
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closing pair (A, B) and {(A, B), . . . , (xn, yn)} is an optimal MLF

structure with the given hairpin pair (A, B).

Proof. It follows from the above definitions and the recursive

Equations (12) and (14).

Statement 7. There are algorithms MLF_E_BP and MLF_G_BP

that solve the OMLF_BP problem with the same time and space

complexity as the algorithms MLF_E and MLF_G, respectively,

solve the MLF problem.

Proof. It follows from the Statements 3, 5 and 6. We first find

conditionally optimal structures MLF_Close(A, B), (A, B) 2 U by

the algorithm MLF_E (or MLF_G). Then we find structures

MLF_Hairpin(A, B), (A, B) 2 U by the algorithm MLF_EH

(or MLF_GH). Finally, we obtain the desired MLF structures

MLF_BP(A, B) combining MLF_Close(A, B) and MLF_Hairpin

(A, B) according to the Statement 6.

3 IMPLEMENTATION

We implemented software tool Afold, freely available as a C/C++
code, currently precompiled under Linux and Windows, which com-

putes the optimal RNA secondary structure within the framework of

NNM. To evaluate internal loops, Afold uses candidate lists-based

algorithms (Subsection 2.2). We performed extensive comparison of

the performance of Afold with that of Mfold (Zuker, 2003), and

ZUKER (Lyngsø et al., 1999) and demonstrated that Afold clearly

outperforms the other two. Our algorithm constructs internal loops

faster than Mfold and ZUKER (Fig. 3A). Afold and Mfold require

similar time to fill the whole energy matrix (Fig. 3) including

multi-branch loop evaluation (ZUKER is much slower at this

step). However, Mfold artificially limits the length of internal

loops by 30 nt. In contrast, there is no such limitation in Afold.

Also, Afold uses the same matrix to evaluate internal and multi-

branch loops and, as a result, requires memory only �2.5L2. Thus,

on a computer with 2 GB of RAM, Afold can analyze sequences with

length up to 28 000 nt (in �28 h on a regular PC), which is substan-

tially longer than what is allowed by other software tools (Fig. 3B).

4 DISCUSSION

The currently available software tools for predicting secondary

structures of RNA molecules, e.g. Mfold (Zuker, 2003) and Vienna

(Hofacker et al., 1994), are based on algorithms with run-time

O(L3). While adequate to analyze individual RNAs, they may be

too slow for genome-wide studies. Thus, faster algorithms are of

interest, even if they can solve only restricted versions of the prob-

lem. One such algorithm, (Eppstein et al. 1992) exploits SDP and

inspired our work.

First, we have proposed a novel method to evaluate internal loops

with NNM energy functions, where the energy of an internal loop

depends both on its size and its asymmetry (Mathews et al., 1999).

The adjustment is based on the following observations: (a) the

calculation of minimal possible energy DGIStruct(A, B) in (5) can

be reduced to the independent calculation of DGMain(A, B) and

DGStrip(A, B) according (6) and (7); (b) the value DGMain(A, B)

can be found using SDP (E-algorithm) or using candidate lists

(M-algorithm); (c) the value DGStrip(A, B) can be computed by

the candidate-list algorithm (G-algorithm, Subsection 2.2).

Our algorithm evaluates internal loops during the search for the

optimal RNA secondary structure with O(L2�log2L) run-time,

which improves the result of Lyngsø et al. (1999). Moreover, we

can calculate DGMain(A, B) applying the algorithm of Larmore and

Schieber (1991) and thus obtain an even better run-time bound.

Second, we proposed algorithms to compute all conditionally

optimal MLF structures in RNA (section 2.3). The energy of

MLF structure can be found both by classical recursive equation

(12) and by a reversed equation (14). The latter equation corres-

ponds to the computation of the energy ‘outside-in’ in contrast to

the ‘inside-out’ computation according to the equation (12). This

observation results in effective algorithms, allowing us to find sets

of conditionally optimal MLF structures. Our algorithm is signific-

antly faster than the currently known algorithms, and may be

adequate for genome-wide studies.

Knowing the complete set of conditionally optimal MLF struc-

tures for an RNA molecule does not provide comprehensive

information about its secondary structure. However, for some bio-

logical problems, such knowledge is very helpful. Two possible

examples are as follows. First, the presence of a low-energy putative

MLF structure within a genome fragment can serve as a sign of a

non-coding RNA gene. Second, information about locally optimal

MLF structures can be used to predict unpaired RNA regions.

The last problem is of great interest because of the accumulating

experimental evidence that support the importance of target local
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Fig. 3. Performance of Afold, Mfold (Zuker, 2003) and ZUKER (Lyngsø

et al., 1999) on a PC with 2.6 GHz processor and 2 Gb of RAM. We deter-

mined the optimal secondary structure for 270 mRNA sequences from the

human genome, of lengths from 1000 to 10 000 (30 sequences for each

thousand). (A) displays the time required for determining MLF structures

and (B) displays time required for the construction of optimal secondary

structures which may include multi-branch loops.
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secondary structure in mRNA and their accessibility for interaction

with antisense oligos or siRNAs (Lee et al., 2002; Bohula et al.,
2003; Vickers et al., 2003). Recent studies, based on computational

predictions and experimental validation for accessibility, strongly

suggested that the secondary structure of a target can be a useful

indicator of the gene-silencing efficiency of the siRNA (Luo and

Chang, 2004). Activity of siRNA is influenced by local character-

istics of the target RNA, including local RNA folding (Kretschmer-

Kazemi et al., 2003). Such observations suggest that predicting

unpaired RNA regions and assessing target accessibility for

siRNA can be useful for the design of active siRNA constructs.

When applied to predicting secondary structures of RNAs, SDP is

substantially different from DP. In particular, SDP explicitly takes into

account the number of allowed base pairs (M). This can lead to fast

algorithms, especially in combination with preliminary base pair fil-

tration and hierarchical approach (Roytberg et al., 2002). Our prelim-

inary tests with in-house implementation of Zuker’s algorithm showed

that filtration of non-stacked base pairs implemented in Mfold (Zuker,

2003) may lead to finding of structures with substantially improved

energy. For example, some wobble base pairs in tRNA secondary

structures can be found or overlooked depending on filtration mode.

However, the SDP approach also has an inherent drawback. DP

can be used to find both the optimal RNA structure and the partition

function, and the time and space complexities are the same for both

tasks. Formally speaking, DP exploits distributivity of operations in

semirings (Aho et al., 1974; Finkelstein and Roytberg, 1993). The

distributivity applies both to pair of operations (+, min) correspond-

ing to the search of optimal structures, min(a + b, a + c) ¼ a + min(b,

c), and to pair (�, +) corresponding to the computation of partition

function, a�b + a�c ¼ a�(b + c).

SDP, in contrast, uses ‘the owner paradigm’ based on the following

observation. Let DG ¼ min{DGB, DG1, DG2, . . .} and DGA > DGB.

Then we know already the value DG0 ¼ min{DGA, DGB, DG1, DG2,

. . .} ¼ DG and, thus, can save computation time. However, this does

not help if we have to compute S¼ DGB + DG1 + DG2 + � � � and S0 ¼
DGA + DGB + DG1 + DG2 + � � � . Thus, SDP cannot be applied, in this

form, to compute the partition function (this was noted by Lyngsø

et al., 1999). Our approach to finding the set of all conditionally

optimal structures to some extent obviates this obstacle and may be

developed to approximate partition function on the basis of SDP.

Comparison of our software tool Afold with Mfold (Zuker, 2003),

and ZUKER (Lyngsø et al., 1999) demonstrates that Afold clearly

outperforms the other two tools (Fig. 3). Afold constructs internal loops

much faster than Mfold and ZUKER (Fig. 3A). The time required for

filling the whole energy matrix (Fig. 3B) including multi-branch loop

evaluation is similar for our algorithm and Mfold (and much higher for

ZUKER). However, Mfold artificially limits the length of internal

loops (to 30 nt by default). In contrast, there is no such limitation

in Afold. Also, Afold uses the same matrix to evaluate internal and

multi-branch loops and, as a result, can fold, with 2 GB RAM, RNA

sequences up to 28 000 nt long (in �28 h on a regular PC).
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