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Abstract. We present a new method of segmentation of nucleotide sequences
into regions with different average composition. The sequence is modelled as a
series of segments; within each segment the sequence is considered as a random
sequence of independent and identically distributed variables. The partition
algorithm includes two stages. In the first stage the optimal partition is found,
which maximises the overall product of marginal likelihoods calculated for each
segment. To prevent segmentation into short segments, the border insertion
penalty may be introduced. In the next stage segments with close compositions
are merged. Filtration is performed with the help of partition function calculated
for all possible subsets of boundaries that belong to the optimal partition. The
long sequences can be segmented by dividing sequences and segmenting those
parts separately. The contextual effects of repeats, genes and other genomic
elements are readily visualised.

1  Introduction

1.1  Biological Motivation

Local nucleotide composition is believed important for many biological issues [1], [2]
such as the isochoric organisation of the genome of higher eukaryotes [3], [4] compo-
sitional differences between exons and introns [5], [6], simple repeats (e.g. [7], tracts
in splice sites [8] and binding sites [9] of DNA, GC islands in promoter sequences
[10] and many others. Moreover, local nucleotide composition is accounted for in
many algorithms developed to search different patterns in DNA sequences [11].
Usually the fixed length window is used and the results may undesirably depend on
the length of the window.
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1.2 Current Algorithms for Compositional Segmentation

Basically our approach is similar to that of [12], see also [13], [14]. The main dif-
ference is that Liu and Lawrence use weights for configurations with different number
of segments, favoring segmentations to longer segments. Instead, we use the two-stage
procedure with filtration of boundaries, which allows us to study segments with the
chosen length-scale. By refusing to use weights we avoid an approximate procedure of
sampling and can profit from the faster implementation of dynamic programming
technique (N2 instead of N 3, where N is the overall length of the sequence).

Another approach is developed in [15]. It uses the traditional frequency count esti-
mator to which the Bayesian estimators converge for large segments. This approach is
less justified for small segments. Recently several algorithms appeared employing hid-
den Markov models to obtain the segmentation of nucleotide sequences into segments
with different composition [16], [17], [18]. However, in these models the number of
possible compositional states usually is set a priori. This assumption works well when
some particular DNA segments are searched for (for instance GpC islands [18]. At the
same time this approach is less justified for partition of new genomic sequences, with
no special attention paid to any particular region.

2 Optimal Segmentation

2.1 Probabilistic Formulation

A symbolic sequence over an alphabet W of L letters is considered as a series of
segments, each segment is a Bernoulli type random sequence. Each segment has the
corresponding symbol counts vector n = (n1,…nL), where nj is a number of occurrences
of the j-th symbol in the segment; n has the multinomial distribution.

The Bayesian approach we are using [16], [19] regards the estimated parameters as
random variables. In the beginning these variables have some prior probability distri-
bution, which may be chosen rather arbitrarily. These probability distributions are re-
estimated from the data using the Bayes formula, and the posterior distribution is
obtained (see formula (4) below). The results of Bayesian estimation are always some
probability distributions of the estimated quantity. Bayesian and classical statistics,
however, agree for large samples because Bayesian distributions converge to the
maximal likelihood estimation for any reasonable prior [20].

2.2 Choosing the Prior

We addressed the issue of choosing the appropriate prior in detail in [21]. The success
of the Bayesian techniques depends dramatically on the prior used, especially for
small samples, and the proper choice of the prior should be conditioned by the context
of the problem, as there are no formal recipes.
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For the segmentation problem, the choice of the prior actually implies some ideas
about the overall composition of polymer. The simplest choice is the Dirichlet prior
[12], [17], which reflects a priori information on the sequence composition. A more
complex is the Dirichlet mixture prior [11], [17], which is based on the idea that a seg-
ment composition can come from one of several compositional classes. One can also
use the entropic prior [19] reflects the statistical homogeneity of the prior source data.

The Dirichlet prior allows pseudocount interpretation [12], according to which the
additional “pseudocounts” are added to the observed counts for each segment. Thus
such the prior can be included into the algorithm without substantial modification of
the formulae. The Dirichlet prior introduces some a priori composition of the se-
quence, and sequence segments, the composition of which is in contrast with this a
priori composition, are more likely extracted at the same significance level. Thus, by
choosing the proper prior one can adjust the program to extraction of specific
functional region with known composition.

However, we believe that the noninformative prior we use, is more suitable for the
initial segmentation of newly sequenced genomes. In this case the problem is not
searching for specific regions, but assessing the general structure of the sequence. In
practice, to choose the prior some statistical observations are made on data banks, or
on the composition of the same sequence averaged on a larger scale. Thus, some cor-
relation of the sequence composition with other sequences or with other parts of the
studied sequence is introduced into the statistical inference, which is not always
desirable, when the sequence under study is entirely new. Informative priors are better
fit to the problem of searching for specific regions with at least approximately known
composition, such as codons, GC islands etc.

2.3 Segment Likelihood

Denote the set of letter probabilities (the segment composition) as � = (�1,…,�L ); it
complies to the normalisation condition:
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Given some prior distribution p(�), consider the tentative block with counts n. The

Bayes theorem brings about the estimated probability density function ( )p σ n :
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is the normalisation constant called the marginal likelihood [12].
Marginal likelihood reflects the overall probability of obtaining the given sequence

in the two stage random process. First, the composition � is picked up according to the
prior distribution, and then the sequence is generated in the Bernoulli random process
with the letter probabilities �. If p(�) is the uniform distribution on the surface of the
simplex S, then
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Surprisingly, this quantity is also obtained in the conceptually similar but different
probabilistic model [22]. For the sequence with the length N, the overall numbers of
each letter (n1,…,nL; �Ni=N) are picked up from the uniform in this case discrete
distribution, then the probability of obtaining the sequence in the shuffling procedure
is calculated. Since we consider the segments as independent, the complete likelihood
of the sequence segmentation into K segments with known boundary location writes

( )P Pk k
k

K

=
=

∏ n
1

(7)

This quantity is optimised over the set of all possible boundary configurations
yielding the optimal segmentation.

2.4 Dynamic Programming

The maximisation algorithm is formulated as follows. Consider a sequence S =
s1s2s3… sN of length N, where si � �. For every segment S(a,b) = sa… sb, a � b with
the length N, we introduce the weight W(a,b). In our case W(a,b) = lnP(S(a,b)). Any
particular segmentation R in m blocks is determined by a set of boundaries R = { k0=
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0, k1, …, km-1, km= N }, where ki separates ski
 and ski +1 ; k0<k1<…<km-1<km. Define

the weight of segmentation R as

( )F R W k kj j
j

m

( ) ,= +−
=

∑ 1
1

1
(8)

For functions determined on the segmentations, we shall also use another set of
variables, the indicators of the boundary positions qk , k = 1,...,N. By definition, qk = 1
if there exists a segment boundary after the letter k, otherwise zero. We shall use both
variables, F(R) and F(q1,...,qk), without special comments.

We are looking for the segmentation R* that has the maximal weight. This is done
in the recurrent manner. Denote by R*(k) the optimal segmentation of the fragment
S(1,k), 1 � k � N. It is trivial to find R*(1). In the case of known optimal segmentations
R*(1),…,R*(k-1), the optimal segmentation R*(k) is found using the following
recurrent expression

( )( ) ( )( ) ( )[ ]F R k F R i W i k
i k

*

,...,

*max ,= + +
= −0 1

1 (9)

Here, we put F(R*(0)) = 0. The recurrent relation (9) yields the algorithm. Since the
building of segmentation R*(k) takes the time ~k, the total time can be estimated as N2.

2.5 An Example

Figure 1 displays the segmentation of a 1000 bp long random sequence with uniform
composition (all letter probabilities are equal to 0.25). One can see that usually it is
segmented into very short segments. Surely this is not what we would like to obtain.
Practically, the segments containing many identical letters are extracted, but the gene-
ral homogeneity of the block is never exhibited.

It should be noted that if we used a different prior, we would obtain a different seg-
mentation pattern. For instance, for the prior, which corresponds to  the composition
rich with A and T,  borders separating segments with different numbers of ‘a’ and ‘t’
(such as a|tttt in the first line) are likely to disappear. Conversely, new boundaries can
appear, as those separating segments with ‘g’ and ‘c’ (such as in the tgtt segment in
the first line).

3.   Border Insertion Penalties

3.1 Fluctuations in Local Composition

One can see (Fig. 1) that usually the segments of optimal segmentation are very short.
Moreover, the random uniform Bernoulli sequence is also divided into many seg-
ments. When the sequence consists of several random homogeneous domains, the
optimal segmentation includes many borders that are located within the domains.
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Redundant boundaries are present due to statistical fluctuation in local composition in
random sequences.

����� � � �� � �� � � ����� �� �� � � � � � �� ��� � � �� �� �� � � � � �� �� �� �� ���� � ��� �� � �� �
� ��� �� � � � �� ��� � �� � �� ��� �� � � ���� � � � ������� � � � � �� �� ���� �� ���� � � � �� �� �
��� ��� �� � � �� �� � � � �� ��� � �� � � � ���� �� �� �� �� ��� �� �� � �� � � �� ������ � � � �� ��
� �� � �� ����� � � �� �� ���� ��� ��� � � �� �� � � �� ��� � � � ���� ��� �� � �� �� � ��� ��� �� �
�� �� � � �� � �� �� �� ���� � � �� � �� � �� � �� ���� ���� ������ � � ��� ��� � � ��� � � ������
����� �� ��� � �� � � �� �� ��� �� ���� � � ��� �� ������ �� � �� ��� ��� � � � �� �� ��� � � � � �
�� �� � �� � � �� �� �� ��� ���� � � � �� � �� � � ���� � � ������ �� � � � ���� �� � � ������ ��� �
� ���� �� � � �� �� �� �� � � �� �� �� ������ ��� ���� �� � � �� �� �� � � �� �� �� �� �� � ��� � � �
� �� �� �� �� �� �� � � � �� �� �� � � ����� ��� � � � �� ��� ��� �� � � � �� ��� � �� � � � �� �� ����
��� �� �� ��� � � ��� ��� �� ������ � � � �� �� � � � �� �� ���� �� � � ������� � � ��� �������
��� ��� �� � � � �� ���� �� �� �� �� � � � � ���� � � � ���� � � � ��� �� � �� ��� ��� �� ��� � � �� �
������ � �� �� �� � �� �� �� �� � � ����� �� � �� � �� ���� � � � �� �� �� ���� � � �� �� � � �� �� �
�� � �� � ��� ���� ���� �� � � � �� ���� ��� �� � � ������ �� �� ������ � � � � � �� � �� � � �� ��
�� � �� � �� �� �� ��� � � �� ���� ���� ��� ����� �� � � � ��� �� � � ��� � ����� �� �� �� �� � � �
��� � � � ��� ������� �� ��� ��� ��� �� ������ �� �� � � � ������� � �� � � �� ��� � � � �� �� �
� ���� ���� � � ��� ��� � � � ���� � � � �� �� �� ��� �� ��� � � � ������ ���� � � � � �� �� � ����
� �� � � � �� ��� �� ��� �� � � ������ � � � ��� ��� �� � � ��� �� �� � � � �� ������ � � � �� � �� � �
� � � ���� � � �� �� �� � � � ��� �� �� ��� ���� �� � � ����� � � �������� ���� �� �� ��� � � �� �
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� � � � �� � ��� �� � � � ����� �� �� �� ���� � �� � �� �� � � �� �� � � � ���������� � � �� ���� ��
� �� �� ���� �� � � �� � �� � �� �� � � �� �� � � �� ����� � � �� ��� ��� ��� ��

Fig. 1. The optimal segmentation of a random sequence. Segment boundaries are marked with
“|”.

Thus it is advantageous to separate boundaries, which separate long regions with
different compositions from those that reflect statistical fluctuations. This can be done
by penalizing those segmentations that contains more boundaries. The penalty � for
insertion a new border can be readily incorporated into functional (7)

( )P Pk k
k

K
K=

=
∏ n

1

β
(10)

For �<1 segmentations that contains less boundaries would have a preference. In our
programs we included parameter B =  –ln�. The optimal value of B is chosen from
computer simulations.

3.2 Random Sequences

It should be noted that the procedure we are using to estimate B is very heuristic. As it
was pointed out by the referee of this paper, this parameter can be interpreted like a
transition probability to enter in a new region. Then the problem could be presented as
identical to modeling the sequence with a Hidden Markov Model (HMM) where the
hidden states are the regions with homogeneous composition. This allows one to use
one of many algorithms to estimate the hidden state transition in a HMM.
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Thus, the main objective of the tests presented below is demonstration, that the
border insertion penalty is the powerful tool in extracting homogeneous segments with
statistically different composition in the sequence. We demonstrate, that the
dependence of the optimal B values on the segment length and composition is very
weak, thus the same B values can be employed for segmenting of sequences of differ-
ent biological origin. Good statistical tools would help to increase the model
performance, but the relevance of the model is reliably demonstrated by our empirical
calculations. In segmenting a random sequence, one would like to obtain the result
which complies to certain requirements. The first of those implies that a homogeneous
random sequence should be segmented as a single block. We performed several series
of statistical tests with sequences of different length and composition. We tested
sequences of 100, 1000, and 10,000 symbols with different compositional biases. For
each length and composition a hundred of random sequences was generated, for each
of which the minimal B providing segmentation into the single unit was found. For the
sequences of the same length, a greater bias in composition usually implied a smaller
critical B value. For strongly biased sequences there were observed examples of
segmentation into the single unit with B = 0. Greater B values are usually required to
remove the inner boundaries from the longer random sequences. The histograms of the
critical B values for the sequences with uniform (all pi = 0.25) composition for
different lengths are shown in Fig. 2. The dependence of the critical B value upon both
the sequence length and the compositional bias is remarkably weak. As a rule, B of
about 3–5 is enough to provide segmentation of a random sequence into the single
block (compare with Figs. 3, and 4 in the next section).

4 Block Random Sequences

When the B value is taken too large the boundaries between longer regions with a
homogeneous composition are also removed. To limit B from the above we performed
two series of tests. In the first series of tests sequences consisting of two random
blocks were generated. The B value for which the single inner boundary was present
in the maximum number of block-random sequences were found. Our calculations
demonstrated that for the given difference between semi-blocks for small lengths the
adequate segmentation is never found (for any B). With the increase in the length of
the semi-block the adequate segmentation is found for some share of the random
sequences. The number of such sequences increases rapidly with the length of the
random semi-blocks. This can be explained from statistical reasons: larger sequences
mean richer samplings for estimations. The best B value,  for which the two-part
segmentation is obtained, can be estimated by equalizing overestimation and under-
estimation errors.
      Here, overestimation corresponds to the case when for the chosen B the sequence
is segmented into the single block, whereas the same sequence is correctly segmented
in two blocks for a smaller B; respectively, underestimation corresponds to the case
when for the same B the sequence is segmented into more than two segments, and the
adequate segmentation is achieved for some greater B value.
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Fig. 2. Histogram of the minimal B  necessary to segment a random homogeneous sequence into
a single domain. 100 experiments. The uniform probability distribution. The sequence length is
(a)  100bp; (b) 500 bp; (c) 1000bp

The optimal B value for 100 letter blocks with probabilities of (0.2, 0.2, 0.3, 0.3)
and (0.3, 0.3, 0.2, 0.2) was about 2.7. From 100 random sequences tested, 60 were
adequately segmented in two parts. Other 40 were not segmented into two parts for
any B. The optimal value B = 2.7 was underestimation for six sequences and overesti-
mation for seven ones. Thus, 45 sequences, a little less than a half, were adequately
segmented. For B = 5, only two sequences were segmented in three blocks (both con-
tained several identical letters on one of the ends), 25 of the sequences were
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segmented adequately with one boundary in the middle, and 75% sequences were
segmented as a single unit.

However, if the bottom limit of B increases very slowly with the length, the upper
limit increases dramatically faster. For instance, all the sequences made from two
1000–letter random blocks with the same probabilities as in the previous example are
segmented in two blocks for any B from the range from 7.2 to 23.5 with the bottom
limit for B less than 5 for 96 examples and less than 3 for 92 examples out of 100.
This allows one to choose B rather comfortably when the short domains are not very
important.

Obviously, the longer the segments, the smaller the difference, which the method is
possible to resolve. The sequence made of two 1000 blocks with compositions (0.24,
0.24, 0.26, 0.26) and (0.26, 0.26, 0.24, 0.24) is almost never (in <10% of all cases)
segmented adequately. However, the single boundary in the sequence with the same
(0.24 vs. 0.26) block probabilities can be reliably resolved for the segment length of
10,000. The error for the boundary location also grows with the decrease in the
compositional difference.

Similar results were obtained in the experiments on island recognition (Figs. 3 and
4). Random sequences were generated and in each experiment islands of contrasting
compositions were put at random into the uniform sequence with the length of 1000,
2000, and 5000 length. The island length amounted to 0.1 of the total sequence length.
We scanned over all BIPs with the 0.5 step.  We put that the island was recognized if
the strictly two inner boundaries were found in the sequence allowing for an error of
10% of island length. The example of the dependence on the BIP is shown in Fig. 3.

One can see, that if the compositional contrast is significant enough, to provide an
acceptable recognition of the segment, the B parameter can be picked up rather
comfortably. Fig. 4 shows the example of trade off between the compositional
difference and the length of the segment.

In the next series of tests we generated sequences consisting of 10 blocks with
different compositions and determined the B values for which the correct number of
blocks was obtained. Then, we monitored the positions of boundaries in the segmen-
tation with this optimal B. For the 100–letter blocks some false-positive boundaries
(often near the ends of the sequence) were added, and some blocks with close
compositions were merged. The chance of block merging is much greater for the
blocks whose composition is close to the uniform (pi = 0.25 for all is). Again the
percentage of correctly segmented sequences was greater for the sequences consisting
of the longer blocks. In all examples of 10,000–letter blocks segmented with B = 3.5
we obtained the adequate segmentation.

All in all, it seems that choosing B between 3 and 5 allows one to eliminate most of
fluctuations and consider the domains obtained as random with a fixed composition.
For B >> 5, almost only the adequate boundaries are left, but some presumably
divergent blocks are merged.



66         V. Makeev et al.

Fig. 3. Searching for an island of contrasting composition within a long sequence. The island
with the length 200bp is located at the random place in the random sequence of the uniform
composition with the length 2000 bp. Along the X-axis is the A-content of the island, the other
three letters have the identical content. For each composition scanning by the BIP value is
performed from bottom to top. The minimal BIP is the average BIP (averaged over 100
experiments) at which the island is correctly recognised (if any). The maximal BIP is the
average BIP corresponding to the limiting value, above which the sequence is segmented into
the single segment. The right scale shows the percentage of sequences for which the island was
correctly recognised allowing for 20bp error in the boundary positions.

5 Filtration of Boundaries

5.1 Partition Function

Another way to study the relative significance of a boundary is the partition function.
With the help of this function one can calculate a score, which reflects how the
addition of this particular boundary influences weights of segmentations.

Given the probability of each segmentation, the partition function of the segmen-
tations can be determined a standard way [23] by summing the probabilities of all pos-
sible partitions:
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Fig. 4 Dependence of the percentage of correctly recognized “islands” on the island”
composition and the island length.  The islands of the lengths of 100, 200, and 500 bp were
placed at random into the sequence with the uniform composition, the length of the islands was
always 0.1 of the total sequence length. Along the X-axis is the A-content of the island, the
other three letters have the identical content. B =5 in all experiments.

here qk equals unity if there is a segment boundary after the letter k in the sequence,
zero otherwise; the overall q = (q1,…,qN) determines a segmentation which has the
probability �(q).

With the partition function at hand we can calculate the probability of a boundary
to be located after a particular letter k, via calculating two partition functions of the
regions to the left and to the right of this border, ZL and ZR respectively:

( ) ( )
( )Π( )k

ZL k ZR N k

Z N
=

− (12)

5.2 Dynamic Programming

The partition function (11) may be rewritten as follows [23]:
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To calculate the probability of a boundary after the letter k, we need also the partition
functions of the segments to the left and to the right of this boundary:
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( ) ( )ZL k eF q q

qq
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k

= −
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( ) ( )ZR k eF q q

qq

k N

Nk

= −

−

∑∑... ,..., 1

1

(15)

Recurrent formulae to calculate ZL(k) and ZR(k) are analogous to (10) and are
obtained through the formal substitution of operations. Summation is used instead of
taking the maximum, and multiplication is used instead of summation [23]. Then the
following relations replace (10):

( ) ( )ZL k e ZL jW j k

j

k

( ) ,= + −

=

−

∑ 1 1

0

1 (16)

( ) ( )ZR k e ZR jW k j

j k

N

=
=
∑ , ( )

(17)

with the respective boundary conditions ZL(0) = ZR(N+1) = 1; W(k-1, k) = W(N, N+1)
= 0.

The obvious modification of the dynamic programming calculates the partition
function in the case when only the given set of boundaries is allowed.

5.3 Filtration Strategy

For the best result one should combine calculation of optimal segmentation with
filtration. At the first stage the optimal segmentation with some B is found. Then the
cutoff value is chosen and all the boundaries with probabilities (11) lower than that
cutoff value are removed. The resulting set of boundaries usually is not optimal in the
sense that some boundaries from the resulting set are removed when the step one is
repeated. So an additional round of optimisation (with the same B) is performed,
removing some boundaries. Iterations converge rapidly to the stable set of boundaries
all of which have the partition function probabilities greater than the cutoff value.

5.4 Partition Function Cutoff vs. Border Insertion Penalties

Both partition function cutoffs and border insertion penalties serve for the same
purpose: to merge segments with close composition absorbing local fluctuation of
composition. However, two segmentations into the same number of domains obtained
via these two methods are not the same. Segmentation with given B is the best seg-
mentation from all the segmentations with the fixed number of domains (this is clearly
seen by taking log in (7)). Thus if one obtains two segmentations with the same
number of domains, one using B and the other using some filtration cutoff level, then
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the segmentation obtained via border insertion penalty would have a greater score.
However, the difference is not the critical and in general two segmentations agree.

5.5 An Example of the Large Scale Segmentation

We have segmented first 200,000 bp of the complete sequence of Plasmodium
falciparum chromosome II available at www.tigr.org. This sequence contains a telo-
meric region, a long subtelomeric repeat and several genes, which consist of exons
with various length. This genome is rich with A+T (in average 80%). In contrast
because a gene should code for the protein its AT content cannot be to high, since
some codons contain G and C in the significant positions of the triplet. Thus one can
hope that some long segments in this sequence are related to the coding sequences.

To evaluate this hypothesis, 200,000 bp sequence was segmented with B = 3.
Filtration with 0.999 cutoff level was performed. All the segments longer than 500
with the G+C content greater than 0.2 were taken.

From the chromosome description all exons with the length greater than 200 were
taken. The results of the comparison are shown in the Table. The telomeric repeat and
the long 21999 bp subtelomeric repeat found in this sequence is clearly seen. Among
remaining 41 long GC containing segments 30 coincide with long exons with different
precision (marked with ‘‘y’’). In one case (177,844) the segment contains two exons.
In one case (149,594) three subsequent segments cover one long exon. Seven long
exons hadn’t any corresponding segments. These are false negative of our ‘‘pre-
diction’’.

There are five examples, when long GC containing segments did not contain long
exons. We searched for long ORFs in such segments. Indeed, three segments out of
five contained long ORFs (starting at 27,864; 112521; and 192,716). These are good
candidates for the new-found genes. Two segments (at 23,281 and 171,499) did not
contain long ORFs. These are false positives of our ‘‘prediction’’. One can see that our
simple model of a long exon (long GC segment containing long ORF) describes
surprisingly well the situation found in Plasmodium falciparum chromosome II.

The fact that the coding regions are more compositionally uniform than the uncod-
ing regions has been reported by several authors, who used different segmentation
procedures and different biological material. It was reported in [24] for compilations
of coding and non-coding sequences from different organisms were studied. The
HMM results published in [11] also allows one to make such conclusion. The attempt
to solve an inverse problem, that is to find coding regions by the segmentation pro-
cedure was published in [25] for Rickettsia prowazekii. The authors of [25] used an
entropic segmentation, which is similar to our approach in the case of long segments
(see [21] for comparison), however, they encoded DNA sequence in 12 letter alphabet
associated with the codon triplet preferences. Thus their algorithm is more related to
the statistical method of gene finding and in a sense is related to the HMM method,
published in [11].

Special methods of statistical gene finding may have a better performance as com-
pared to our general segmentation method. Here we want to note, that in Plasmodium
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falciparum genome, the majority of long exons can be extracted only by compositional
segmentation, which we believe implies that in reality there are not so many examples
of homogeneous regions in genomes, besides coding regions and repeats. The
preliminary data that we obtained for Leishmania major confirm this conclusion.

6 Discussion

When the initial segmentation with the non-informative prior obtained, it becomes
interesting to cluster the composition of the resulting segments. Firstly, our
preliminary calculations on Plasmodium falciparum and Leishmania major genomes
demonstrated that there are limited number of classes of long, statistically homo-
geneous regions in genomes of lower eukaryotes. These are long exons, divergent
repeats, and other low-complexity regions, such as AT-rich strands. Short exons and
intergenic regions are segmented into many short segments.

Table 1. Comparison of long GC-rich segments with coding regions in initial 200,000bp
segment of P.falciparum

SegBeg SegEnd SegLen Score GC ExBeg ExEnd ExLen

0 1152 1152 -0.236931 0.4635 telomeric repeat

1152 23151 21999 1392.596229 0.3237 long sub-telomeric repeat

23281 24034 753 63.886702 0.2922 n

25106 27469 2363 139.753512 0.3275 25232 29035 3803 y

27861 29136 1275 70.190261 0.3318 27864 29183 1319 long ORF

29658 31160 1502 140.942212 0.2843 29837 31168 1331 y

32952 33956 1004 41.621573 0.3516 33030 33965 935 y

35868 37186 1318 120.276477 0.2868 35927 37249 1322 y

38300 39105 805 39.909483 0.3379 38287 39132 845 y

41439 42558 1119 46.975472 0.3512 41515 42573 1058 y

45286 46344 1058 n

47186 49879 2693 499.468944 0.2042 48923 49861 938 y

51774 53139 1365 132.519112 0.2806 52456 53202 746 y

54351 55083 732 28.625235 0.3538 54418 54936 518 y

57445 58207 762 21.842848 0.3727 57344 58228 884 y

63358 64231 873 41.500332 0.3414 63360 64376 1016 y

66723 67531 808 41.432232 0.3354 66729 67545 816 y

69370 69771 401 n

73492 74070 578 58.532224 0.2734 73441 74094 653 y

77158 78522 1364 160.958018 0.2595 77251 78360 1109 y

81349 83887 2538 317.825703 0.2537 81291 83900 2609 y

86838 87409 571 45.914259 0.296 86832 87400 568 y

87675 88110 435 n
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91330 98457 7127 568.747181 0.3022 91318 98532 7214 y

103364 105245 1881 57.568751 0.3732 103385 105238 1853 y

109570 110596 1026 141.488399 0.2407 109564 110202 638 y

112528 113189 661 76.080559 0.2602 112551 113167 616 long ORF

117633 118436 803 129.753598 0.2204 117558 118167 609 y

120595 124170 3575 401.15354 0.2666 120524 124102 3578 y

127994 128314 320 n

129441 133827 4386 696.118369 0.2253 129688 133570 3882 y

135523 137139 1616 n

139955 140191 236 n

141536 147622 6086 1096.926023 0.2087 141625 147564 5939 y

149524 151241 1717 207.214863 0.2574 149524 156981 7457 y

151257 153666 2409 425.008465 0.2109 cont y

153781 157075 3294 595.192248 0.208 cont y

158090 159707 1617 277.641574 0.214 158137 159660 1523 y

160425 161310 885 138.391867 0.2249 160514 161242 728 y

166144 168051 1907 n

168815 170150 1335 105.964553 0.3004 168838 170136 1298 y

171499 172084 585 82.778237 0.2359 n

177123 178030 907 86.610189 0.2811 176628 178300 1672 y

178844 181560 2716 470.085051 0.2135 178955 180924 1969 y

cont 181103 181526 423

183428 185860 2432 228.672468 0.285 182228 189115 6887 y

192622 194059 1437 271.130882 0.2011 192716 193324 608 long ORF

194795 198041 3246 597.246378 0.2055 194826 196916 2090 y

198302 199601 1299 162.87607 0.2525 198353 199570 1217 y

Although these results are preliminary and should be tested on a greater number of
genomes, it is very likely that segment compositions in native sequences belong to the
limited number of classes. In this case the advanced segmentation algorithm, for
instance Hidden Markov Models, which uses the number of compositional states as
the parameter becomes entirely relevant [18]. Knowing natural compositional classes
will facilitate constructing a good informative prior, which allows one to reliably
annotate genomic sequences with fast segmentation method.

Moreover, the comparative positioning of the regions with distinct composition can be
an interesting for assessing evolution, one of whose basic processes is the relocation of
parts of genomes between chromosomes or within the same chromosome [26].

Thus, the segmentation can yield a lot of valuable biological information. We be-
lieve that our method suits best for the initial segmentation of newly sequenced ge-
nomes, with no a priori information on the composition. Another possible application
is initial segmentation into long regions (with large B) as a preprocessing before
pattern search procedure, which often uses general composition as a statistical ref-
erence. The power of such procedure can be increased by referring the algorithms not
to the general composition of the sequence but to the composition of the region.
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Compositional dependences can be helpful in searching for many functionally
important patterns. However, in this case a more specialized algorithms appear to be
more powerful. We believe that HMM is the best for such the case. Our approach is
faster than HMM, since we use no sampling procedure, which requires thoughtful
convergence control [18]. Thus, our algorithm can be helpful in studies of long com-
plete genomes. In this case the application of informative prior constructed with the
reference to the specific region can improve the results.
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