
Multiseed Lossless Filtration
Gregory Kucherov, Laurent Noé, and Mikhail Roytberg

Abstract—We study a method of seed-based lossless filtration for approximate string matching and related bioinformatics

applications. The method is based on a simultaneous use of several spaced seeds rather than a single seed as studied by Burkhardt

and Kärkkäinen [1]. We present algorithms to compute several important parameters of seed families, study their combinatorial

properties, and describe several techniques to construct efficient families. We also report a large-scale application of the proposed

technique to the problem of oligonucleotide selection for an EST sequence database.

Index Terms—Filtration, string matching, gapped seed, gapped q-gram, local alignment, sequence similarity, seed family, multiple

spaced seeds, dynamic programming, EST, oligonucleotide selection.

�

1 INTRODUCTION

FILTERING is a widely-used technique in biosequence
analysis. Applied to the approximate string matching

problem [2], it can be summarized by the following two-

stage scheme: To find approximate occurrences (matches) of

a given string in a sequence (text), one first quickly discards

(filters out) those sequence regions where matches cannot

occur, and then checks out the remaining parts of the

sequence for actual matches. The filtering is done according

to small patterns of a specified form that the searched string
is assumed to share, in the exact way, with its approximate

occurrences. A similar filtration scheme is used by heuristic

local alignment algorithms ([3], [4], [5], [6], to mention a

few): They first identify potential similarity regions that

share some patterns and then actually check whether those

regions represent a significant similarity by computing a

corresponding alignment.

Two types of filtering should be distinguished—lossless

and lossy. A lossless filtration guarantees to detect all

sequence fragments under interest, while a lossy filtration

may miss some of them, but still tries to detect a majority of

them. Local alignment algorithms usually use a lossy

filtration. On the other hand, the lossless filtration has been

studied in the context of approximate string matching

problem [7], [1]. In this paper, we focus on the lossless

filtration.

In the case of lossy filtration, its efficiency is measured by

two parameters, usually called selectivity and sensitivity. The

sensitivity measures the part of sequence fragments of

interest that are missed by the filter (false negatives), and

the selectivity indicates what part of detected candidate

fragments do not actually represent a solution (false

positives). In the case of lossless filtration, only the

selectivity parameter makes sense and is therefore the main

characteristic of the filtration efficiency.

The choice of patterns that must be contained in the

searched sequence fragments is a key ingredient of the

filtration algorithm. Gapped seeds (spaced seeds, gapped q-

grams) have been recently shown to significantly improve

the filtration efficiency over the “traditional” technique of

contiguous seeds. In the framework of lossy filtration for

sequence alignment, the use of designed gapped seeds has

been introduced by the PATTERNHUNTER method [4] and

then used by some other algorithms (e.g., [5], [6]). In [8], [9],

spaced seeds have been shown to improve indexing

schemes for similarity search in sequence databases. The

estimation of the sensitivity of spaced seeds (as well as of

some extended seed models) has been the subject of several

recent studies [10], [11], [12], [13], [14], [15]. In the

framework of lossless filtration for approximate pattern

matching, gapped seeds were studied in [1] (see also [7])

and have also been shown to increase the filtration

efficiency considerably.
In this paper, we study an extension of the lossless

single-seed filtration technique [1]. The extension is based

on using seed families rather than individual seeds. The idea

of simultaneous use of multiple seeds for DNA local

alignment was already envisaged in [4] and applied in

PATTERNHUNTER II software [16]. The problem of design-

ing efficient seed families has also been studied in [17]. In

[18], multiple seeds have been applied to the protein search.

However, the issues analyzed in the present paper are quite

different, due to the proposed requirement for the search to

be lossless.

The rest of the paper is organized as follows: After

formally introducing the concept of multiple seed filtering

in Section 2, Section 3 is devoted to dynamic programming

algorithms to compute several important parameters of

seed families. In Section 4, we first study several combina-

torial properties of families of seeds and, in particular, seeds

having a periodic structure. These results are used to obtain

a method for constructing efficient seed families. We also

outline a heuristic genetic programming algorithm for

constructing seed families. Finally, in Section 5, we present

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005 51

. G. Kucherov and L. Noé are with the INRIA/LORIA, 615, rue du Jardin
Botanique, B.P. 101, 54602 Villers-lès-Nancy, France.
E-mail: {Gregory.Kucherov, Laurent.Noe}@loria.fr.

. M. Roytberg is with the Institute of Mathematical Problems in Biology,
Pushchino, Moscow Region, Russia. E-mail: roytberg@impb.psn.ru.

Manuscript received 24 Sept. 2004; revised 13 Dec. 2004; accepted 10 Jan.
2005; published online 30 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0154-0904.

1545-5963/05/$20.00 � 2005 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

several seed families we computed, and we report a large-

scale experimental application of the method to a practical

problem of oligonucleotide selection.

2 MULTIPLE SEED FILTERING

A seed Q (called also spaced seed or gapped q-gram) is a list

fp1; p2; . . . ; pdg of positive integers, called matching positions,

such that p1 < p2 < . . . < pd. By convention, we always

assume p1 ¼ 0. The span of a seed Q, denoted sðQÞ, is the

quantity pd þ 1. The number d of matching positions is called

theweight of the seed and denoted wðQÞ. Often, we will use a

more visual representation of seeds, adopted in [1], as words

of length sðQÞ over the two-letter alphabet f#;�g, where #

occurs at all matching positions and—at all positions in

between. For example, seed f0; 1; 2; 4; 6; 9; 10; 11g of weight 8

andspan12 is representedbyword###�#�#��###.

The character � is called a joker. Note that, unless otherwise

stated, the seed has the character # at its first and last

positions.

Intuitively, a seed specifies the set of patterns that, if

shared by two sequences, indicate a possible similarity

between them. Two sequences are similar if the Hamming

distance between them is smaller than a certain threshold.

For example, sequences CACTCGT and CACACTT are similar

within Hamming distance 2 and this similarity is detected

by the seed##�# at position 2. We are interested in seeds

that detect all similarities of a given length with a given

Hamming distance.

Formally, a gapless similarity (hereafter simply similarity)

of two sequences of length m is a binary word w 2 f0; 1gm

interpreted as a sequence of matches (1s) and mismatches

(0s) of individual characters from the alphabet of input

sequences. A seed Q ¼ fp1; p2; . . . ; pdg matches a similarity w

at position i, 1 � i � m� pd þ 1, iff for every j 2 ½1::d�, we

have w½iþ pj� ¼ 1. In this case, we also say that seed Q has

an occurrence in similarity w at position i. A seed Q is said to

detect a similarity w if Q has at least one occurrence in w.

Given a similarity length m and a number of

mismatches k, consider all similarities of length m

containing k 0s and ðm� kÞ 1s. These similarities are

called ðm; kÞ-similarities. A seed Q solves the detection

problem ðm; kÞ (for short, the ðm; kÞ-problem) iff all of m
k

� �
ðm; kÞ-similarities w are detected by Q. For example, one

can check that seed #�##��#�## solves the

ð15; 2Þ-problem.

Note that the weight of the seed is directly related to the

selectivity of the corresponding filtration procedure. A larger

weight improves the selectivity, as less similarities will pass

through the filter. On the other hand, a smaller weight

reduces the filtration efficiency. Therefore, the goal is to

solve an ðm; kÞ-problem by a seed with the largest possible

weight.

Solving ðm; kÞ-problems by a single seed has been studied

by Burkhardt and Kärkkäinen [1]. An extension we propose

here is to use a family of seeds, instead of a single seed, to solve

the ðm; kÞ-problem. Formally, a finite family of seeds F ¼<

Ql >
L
l¼1 solves an ðm; kÞ-problem iff for any ðm; kÞ-similarityw,

there exists a seed Ql 2 F that detects w.

Note that the seeds of the family are used in the

complementary (or disjunctive) fashion, i.e., a similarity is

detected if it is detected by one of the seeds. This differs from

the conjunctive approach of [7] where a similarity should be

detected by two seeds simultaneously.

The following example motivates the use of multiple

seeds. In [1], it has been shown that a seed solving the

ð25; 2Þ-problem has the maximal weight 12. The only such

seed (up to reversal) is

###�#��###�#��###�#:

However, the problem can be solved by the family
composed of the following two seeds of weight 14:

#####�##���#####�##

and

#�##���#####�##���####:

Clearly, using these two seeds increases the selectivity of

the search, as only similarities having 14 or more matching

characters pass the filter versus 12 matching characters in

the case of single seed. On uniform Bernoulli sequences,

this results in the decrease of the number of candidate

similarities by the factor of jAj2=2, where A is the input

alphabet. This illustrates the advantage of the multiple seed

approach: it allows to increase the selectivity while

preserving a lossless search. The price to pay for this gain

in selectivity is multiplying the work on identifying the

seed occurrences. In the case of large sequences, however,

this is largely compensated by the decrease in the number

of false positives caused by the increase of the seed weight.

3 COMPUTING PROPERTIES OF SEED FAMILIES

Burkhardt and Kärkkäinen [1] proposed a dynamic pro-

gramming algorithm to compute the optimal threshold of a

given seed—the minimal number of its occurrences over all

possible ðm; kÞ-similarities. In this section, we describe an

extension of this algorithm for seed families and, on the

other hand, describe dynamic programming algorithms for

computing two other important parameters of seed families

that we will use in a later section.
Consider an ðm; kÞ-problem and a family of seeds

F ¼< Ql >
L
l¼1 . We need the following notations:

. smax ¼ maxfsðQlÞgLl¼1, smin ¼ minfsðQlÞgLl¼1,

. for a binary word w and a seed Ql, suffðQl; wÞ¼1 if
Ql matches w at position ðjwj�sðQlÞþ1Þ (i.e.,
matches a suffix of w), otherwise suffðQl; wÞ¼0,

. lastðwÞ ¼ 1 if the last character of w is 1, otherwise
lastðwÞ ¼ 0, and

. zerosðwÞ is the number of 0s in w.

3.1 Optimal Threshold

Given an ðm; kÞ-problem, a family of seeds F ¼< Ql >
L
l¼1

has the optimal threshold TF ðm; kÞ if every ðm; kÞ-similarity

52 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005

has at least TF ðm; kÞ occurrences of seeds of F and this is the

maximal number with this property. Note that overlapping

occurrences of a seed as well as occurrences of different

seeds at the same position are counted separately. For

example, the singleton family f###�##g has threshold 2

for the ð15; 2Þ-problem.

Clearly, F solves an ðm; kÞ-problem if and only if

TF ðm; kÞ > 0. If TF ðm; kÞ > 1, then one can strengthen the

detection criterion by requiring several seed occurrences for

a similarity to be detected. This shows the importance of the

optimal threshold parameter.

We now describe a dynamic programming algorithm

for computing the optimal threshold TF ðm; kÞ. For a

binary word w, consider the quantity TF ðm; k;wÞ defined

as the minimal number of occurrences of seeds of F in all

ðm; kÞ-similarities which have the suffix w. By definition,

TF ðm; kÞ ¼ TF ðm; k; "Þ. Assume that we precomputed

values T F ðj; wÞ ¼ TF ðsmax; j; wÞ, for all j � maxfk; smaxg,
jwj ¼ smax. The algorithm is based on the following

recurrence relations on TF ði; j; wÞ, for i � smax.

TF ði; j; w½1::n�Þ ¼
T F ðj; wÞ; if i¼smax;

TF ði�1; j�1; w½1::n�1�Þ; if w½n�¼0;

TF ði�1; j; w½1::n�1�Þ þ ½
PL

l¼1 suffðQl; wÞ�; if n¼smax;

minfTF ði; j; 1:wÞ; TF ði; j; 0:wÞg; if zerosðwÞ<j;

TF ði; j; 1:wÞ; if zerosðwÞ¼j:

8>>>>>><
>>>>>>:

The first relation is an initial condition of the recurrence.

The second one is based on the fact that if the last symbol of

w is 0, then no seed can match a suffix of w (as the last

position of a seed is always assumed to be a matching

position). The third relation reduces the size of the problem

by counting the number of suffix seed occurrences. The

fourth one splits the counting into two cases, by considering

two possible characters occurring on the left of w. If w

already contains j 0s, then only 1 can occur on the left of w,

as stated by the last relation.

A dynamic programming implementation of the above

recurrence allows to compute TF ðm; k; "Þ in a bottom-up

fashion, starting from initial valuesT F ðj; wÞ andapplying the

above relations in the order in which they are given. A

straightforward dynamic programming implementation re-

quiresOðm � k � 2ðsmaxþ1ÞÞ time and space. However, the space

complexity can be immediately improved: If values of i are

processed successively, then only Oðk � 2ðsmaxþ1ÞÞ space is

needed. Furthermore, for each i and j, it is not necessary to

consider all 2ðsmaxþ1Þ different strings w, but only those which

contain up to j 0s. The number of those w is gðj; smaxÞ ¼Pj
e¼0

smax

e

� �
. For each i, j ranges from 0 to k. Therefore, for each

i,weneed to store fðk; smaxÞ ¼
Pk

j¼0 gðj; smaxÞ ¼
Pk

j¼0
smax

j

� �
�

ðk� jþ 1Þ values. This yields the same space complexity as

for computing the optimal threshold for one seed [1].

The quantity
PL

l¼1 suffðQl; wÞ can be precomputed for all

considered words w in time OðL � gðk; smaxÞÞ and space

Oðgðk; smaxÞÞ, under the assumption that checking an

individual match is done in constant time. This leads to

the overall time complexity Oðm � fðk; smaxÞ þ L � gðk; smaxÞÞ
with the leading term m � fðk; smaxÞ (as L is usually small

compared to m and gðk; smaxÞ is smaller than fðk; smaxÞ).

3.2 Number of Undetected Similarities

We now describe a dynamic programming algorithm that

computes another characteristic of a seed family, that will

be used later in Section 4.4. Consider an ðm; kÞ-problem.

Given a seed family F ¼< Ql >
L
l¼1 , we are interested in

the number UF ðm; kÞ of ðm; kÞ-similarities that are not

detected by F . For a binary word w, define UF ðm; k; wÞ to

be the number of undetected ðm; kÞ-similarities that have

the suffix w.
Similar to [10], letXðF Þ be the set of binary words w such

that 1) jwj � smax, 2) for any Ql 2 F , suffðQl; 1
smax�jwjwÞ ¼ 0,

and 3) no proper suffix of w satisfies 2). Note that word 0

belongs to XðF Þ, as the last position of every seed is a

matching position.
The following recurrence relations allow to compute

UF ði; j; wÞ for i � m, j � k, and jwj � smax:

UF ði; j; w½1::n�Þ ¼
i�jwj

j�zerosðwÞ

� �
; if i < smin;

0; if 9l 2 ½1::L�;
suffðQl; wÞ ¼ 1;

UF ði� 1; j� lastðwÞ; w½1::n� 1�Þ; if w 2 XðF Þ;
UF ði; j; 1:wÞ þ UF ði; j; 0:wÞ; if zerosðwÞ < j;

UF ði; j; 1:wÞ; if zerosðwÞ ¼ j:

8>>>>>>>>><
>>>>>>>>>:
The first condition says that if i < smin, then no word of

length i will be detected, hence the binomial coefficient. The

second condition is straightforward. The third relation

follows from the definition of XðF Þ and allows us to reduce

the size of the problem. The last two conditions are similar

to those from the previous section.
The set XðF Þ can be precomputed in time OðL �

gðk; smaxÞÞ and the worst-case time complexity of the whole

algorithm remains Oðm � fðk; smaxÞ þ L � gðk; smaxÞÞ.

3.3 Contribution of a Seed

Using a similar dynamic programming technique, one can

compute, for a given seed of the family, the number of

ðm; kÞ-similarities that are detected only by this seed and not

by the others. Together with the number of undetected

similarities, this parameter will be used later in Section 4.4.
Given an ðm; kÞ-problem and a family F ¼< Ql >

L
l¼1 , we

define SF ðm; k; lÞ to be the number of ðm; kÞ-similarities

detected by the seed Ql exclusively (through one or several

occurrences), and SF ðm; k; l; wÞ to be the number of those

similarities ending with the suffix w. A dynamic program-

ming algorithm similar to the one described in the previous

sections can be applied to compute SF ðm; k; lÞ. The

recurrence is given below.

KUCHEROV ET AL.: MULTISEED LOSSLESS FILTRATION 53

SF ði; j; l; w½1::n�Þ ¼
0 if i < sminor 9l0 6¼ l

suffðQl0 ; wÞ ¼ 1

SF ði� 1; j� 1; l; w½1::n� 1�Þ if w½n� ¼ 0

SF ði� 1; j; l; w½1::n� 1�Þ if n ¼ jQlj and
suffðQl; wÞ ¼ 0

SF ði� 1; j; l; w½1::n� 1�Þ
þUF ði� 1; j; w½1::n� 1�Þ if n ¼ smax and

suffðQl; wÞ ¼ 1

and 8l0 6¼ l;

suffðQl0 ; wÞ ¼ 0;

SF ði; j; l; 1:w½1::n�Þ
þSF ði; j; l; 0:w½1::n�Þ if zerosðwÞ < j

SF ði; j; l; 1:w½1::n�Þ if zerosðwÞ ¼ j:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

The third and fourth relations play the principal role:

if Ql does not match a suffix of w½1::n�, then we simply

drop out the last letter. If Ql matches a suffix of w½1::n�,
but no other seed does, then we count prefixes matched

by Ql exclusively (term SF ði� 1; j; l; w½1::n� 1�Þ) together

with prefixes matched by no seed at all (term

UF ði� 1; j; w½1::n� 1�Þ). The latter is computed by the

algorithm of the previous section.

The complexity of computing SF ðm; k; lÞ for a given l is

the same as the complexity of dynamic programming

algorithms from the previous sections.

4 SEED DESIGN

In the previous section we showed how to compute various

useful characteristics of a given family of seeds. A much

more difficult task is to find an efficient seed family that

solves a given ðm; kÞ-problem. Note that there exists a trivial

solution where the family consists of all m
k

� �
position

combinations, but this is in general unacceptable in practice

because of a huge number of seeds. Our goal is to find

families of reasonable size (typically, with the number of

seeds smaller than 10), with a good filtration efficiency.

In this section, we present several results that contribute

to this goal. In Section 4.1, we start with the case of single

seed with a fixed number of jokers and show, in particular,

that for one joker, there exists one best seed in a sense that

will be defined. We then show in Section 4.2 that a solution

for a larger problem can be obtained from a smaller one by a

regular expansion operation. In Section 4.3, we focus on

seeds that have a periodic structure and show how those

seeds can be constructed by iterating some smaller seeds.

We then show a way to build efficient families of periodic

seeds. Finally, in Section 4.4, we briefly describe a heuristic

approach to constructing efficient seed families that we

used in the experimental part of this work presented in

Section 5.

4.1 Single Seeds with a Fixed Number of Jokers

Assume that we fixed a class of seeds under interest (e.g.,

seeds of a given minimal weight). One possible way to

define the seed design problem is to fix a similarity length

m and find a seed that solves the ðm; kÞ-problem with the

largest possible value of k. A complementary definition is to

fix k and minimize m provided that the ðm; kÞ-problem is

still solved. In this section, we adopt the second definition

and present an optimal solution for one particular case.

For a seed Q and a number of mismatches k, define the

k-critical length for Q as the minimal value m such that Q

solves the ðm; kÞ-problem. For a class of seeds C and a value

k, a seed is k-optimal in C if Q has the minimal k-critical

length among all seeds of C.
One interesting class of seeds C is obtained by putting an

upper bound on the possible number of jokers in the seed,

i.e. on the number ðsðQÞ � wðQÞÞ. We have found a general

solution of the seed design problem for the class C1ðnÞ
consisting of seeds of weight dwith only one joker, i.e. seeds

#d�r �#r.

Consider first the case of one mismatch, i.e., k ¼ 1. A

1-optimal seed from C1ðdÞ is #d�r �#r with r ¼ bd=2c. To
see this, consider an arbitrary seed Q ¼ #p �#q, pþ q ¼ d,

and assume by symmetry that p � q. Observe that the

longest ðm; 1Þ-similarity that is not detected by Q is

1p�101pþq of length ð2pþ qÞ. Therefore, we have to minimize

2pþ q ¼ dþ p, and since p � dd=2e, the minimum is reached

for p ¼ dd=2e, q ¼ bd=2c.
However, for k � 2, an optimal seed has an asymmetric

structure described by the following theorem.

Theorem 1. Let n be an integer and r ¼ ½d=3� (½x� is the closest
integer to x). For every k � 2, seed QðdÞ ¼ #d�r �#r is

k-optimal among the seeds of C1ðdÞ.
Proof. Again, consider a seed Q ¼ #p �#q, pþ q ¼ d, and

assume that p � q. Consider the longest word SðkÞ from
ð1�0Þk1�, k � 1, which is not detected by Q and let LðkÞ is
the length of SðkÞ. By the above remark, Sð1Þ ¼ 1p�101pþq

and Lð1Þ ¼ 2pþ q.

It is easily seen that for every k, SðkÞ starts either with

1p�10, or with 1pþq01q�10. Define L0ðkÞ to be the maximal

length of a word from ð1�0Þk1� that is not detected by Q

and starts with 1q�10. Since prefix 1q�10 implies no

additional constraint on the rest of the word, we have

L0ðkÞ ¼ q þ Lðk� 1Þ. Observe that L0ð1Þ ¼ pþ 2q (word

1q�101pþq). To summarize, we have the following

recurrences for k � 2:

L0ðkÞ ¼ q þ Lðk� 1Þ; ð1Þ
LðkÞ ¼ maxfpþ Lðk� 1Þ; pþ q þ 1þ L0ðk� 1Þg; ð2Þ

with initial conditions L0ð1Þ ¼ pþ 2q, Lð1Þ ¼ 2pþ q.

Two cases should be distinguished. If p � 2q þ 1, then

the straightforward induction shows that the first term in

(2) is always greater, and we have

LðkÞ ¼ ðkþ 1Þpþ q; ð3Þ

and the corresponding longest word is

SðkÞ ¼ ð1p�10Þk1pþq: ð4Þ

54 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005

If q � p � 2q þ 1, then by induction, we obtain

LðkÞ ¼ ð‘þ 1Þpþ ðkþ 1Þq þ ‘ if k ¼ 2‘;
ð‘þ 2Þpþ kq þ ‘ if k ¼ 2‘þ 1;

�
ð5Þ

and

SðkÞ ¼ ð1pþq01q�10Þ‘1pþq if k ¼ 2‘;

1p�10ð1pþq01q�10Þ‘1pþq if k ¼ 2‘þ 1:

�
ð6Þ

By definition of LðkÞ, seed #p �#q detects any word

from ð1�0Þk1� of length ðLðkÞ þ 1Þ or more, and this is the

tight bound. Therefore, we have to find p; q which
minimize LðkÞ. Recall that pþ q ¼ d, and observe that for

p � 2q þ 1, LðkÞ (defined by (3)) is increasing on p, while

for p � 2q þ 1, LðkÞ (defined by (5)) is decreasing on p.

Therefore, both functions reach its minimum when

p ¼ 2q þ 1. Therefore, if d � 1 ðmod 3Þ, we obtain q ¼
bd=3c and p ¼ d� q. If d � 0 ðmod 3Þ, a routine computa-

tion shows that the minimum is reached at q ¼ d=3,

p ¼ 2d=3, and if d � 2 ðmod 3Þ, the minimum is reached
at q ¼ dd=3e, p ¼ d� q. Putting the three cases together

results in q ¼ ½d=3�, p ¼ d� q. tu
To illustrate Theorem 1, seed ####�## is optimal

among all seeds of weight 6 with one joker. This means that

this seed solves the ðm; 2Þ-problem for all m � 16 and this is

the smallest possible bound over all seeds of this class.

Similarly, this seed solves the ðm; 3Þ-problem for all m � 20,

which is the best possible bound, etc.

4.2 Regular Expansion and Contraction of Seeds

We now show that seeds solving larger problems can be

obtained from seeds solving smaller problems, and vice

versa, using regular expansion and regular contraction

operations.

Given a seed Q , its i-regular expansion i�Q is

obtained by multiplying each matching position by i. This

is equivalent to inserting i� 1 jokers between every two

successive positions along the seed. For example, if Q ¼
f0; 2; 3; 5g (or #�##�#), then the 2-regular expansion

of Q is 2�Q ¼ f0; 4; 6; 10g (or #���#�#���#).

Given a family F , its i-regular expansion i� F is the

family obtained by applying the i-regular expansion on

each seed of F .

Lemma 1. If a family F solves an ðm; kÞ-problem, then the
ðim; ðiþ 1Þk� 1Þ-problem is solved both by family F and by
its i-regular expansion Fi ¼ i� F .

Proof. Consider an ðim; ðiþ 1Þk� 1Þ-similarity w. By the

pigeon hole principle, it contains at least one substring of

length m with k mismatches or less and, therefore, F

solves the ðim; ðiþ 1Þk� 1Þ-problem. On the other hand,

consider i disjoint subsequences of w each one consisting

of m positions equal modulo i. Again, by the pigeon hole

principle, at least one of them contains k mismatches or

less and, therefore, the ðim; ðiþ 1Þk� 1Þ-problem is

solved by i� F . tu
The following lemma is the inverse of Lemma 1. It states

that if seeds solving a bigger problem have a regular
structure, then a solution for a smaller problem can be

obtained by the regular contraction operation, inverse to the
regular expansion.

Lemma 2. If a family Fi ¼ i� F solves an ðim; kÞ-problem, then

F solves both the ðim; kÞ-problem and the ðm; bk=icÞ-problem.

Proof. One can even show that F solves the ðim; kÞ-problem
with the additional restriction for F tomatch inside one of

the position intervals ½1::m�; ½mþ 1::2m�; . . . ; ½ði� 1Þmþ
1::im�. This is done by using the bijective mapping from

Lemma 1: Given an ðim; kÞ-similarity w, consider i disjoint

subsequences wj (0 � j � i� 1) of w obtained by picking

m positions equal to j modulo i, and then consider the

concatenation w0 ¼ w1w2 . . .wi�1w0.
For every ðim; kÞ-similarity w0, its inverse image w is

detected by Fi, and therefore F detects w0 at one of the
intervals

½1::m�; ½mþ 1::2m�; . . . ; ½ði� 1Þmþ 1::im�:

Futhermore, for any ðm; bk=icÞ-similarity v, consider w0 ¼
vi and its inverse image w. As w0 is detected by Fi, v is
detected by F . tu

Example 1. To illustrate the two lemmas above, we give the
following example pointed out in [1]. The following two

seeds are the only seeds of weight 12 that solve the
ð50; 5Þ-problem:

#�#�#���#�����#�#�#���
#�����#�#�#���#

and

###�#��###�#��###�#:

The first one is the 2-regular expansion of the second. The

second one is the only seed of weight 12 that solves the

ð25; 2Þ-problem.

The regular expansion allows, in some cases, to obtain an

efficient solution for a larger problem by reducing it to a

smaller problem for which an optimal or a near-optimal

solution is known.

4.3 Periodic Seeds

In this section, we study seeds with a periodic structure that

can be obtained by iterating a smaller seed. Such seeds often

turn out to be among maximally weighted seeds solving a

given ðm; kÞ-problem. Interestingly, this contrasts with the

lossy framework where optimal seeds usually have a

“random” irregular structure.

Consider two seeds Q1;Q2 represented as words over

f#;�g. In this section, we lift the assumption that a seed

must start and end with a matching position. We denote

½Q1;Q2�i the seed defined as ðQ1Q2ÞiQ1. For example,

½###�#;���2¼###�#��###�#��###�#.

We also need a modification of the ðm; kÞ-problem, where

ðm; kÞ-similarities are considered modulo a cyclic permuta-

tion. We say that a seed family F solves a cyclic

ðm; kÞ-problem, if for every ðm; kÞ-similarity w, F detects

one of cyclic permutations of w. Trivially, if F solves an

ðm; kÞ-problem, it also solves the cyclic ðm; kÞ-problem. To

KUCHEROV ET AL.: MULTISEED LOSSLESS FILTRATION 55

distinguish from a cyclic problem, we call sometimes an

ðm; kÞ-problem a linear problem.
We first restrict ourselves to the single-seed case. The

following lemma demonstrates that iterating smaller seeds

solving a cyclic problem allows to obtain a solution for
bigger problems, for the same number of mismatches.

Lemma 3. If a seed Q solves a cyclic ðm; kÞ-problem, then for

every i � 0, the seed Qi ¼ ½Q;�ðm�sðQÞÞ�i solves the linear

ðm � ðiþ 1Þ þ sðQÞ � 1; kÞ-problem. If i 6¼ 0, the inverse

holds too.

Proof.) Consider an ðm � ðiþ 1Þ þ sðQÞ � 1; kÞ-similarity

u. Transform u into a similarity u0 for the cyclic

ðm; kÞ-problem as follows: For each mismatch position ‘

of u, set 0 at position ð‘modmÞ in u0. The other positions

of u0 are set to 1. Clearly, there are at most k 0s in u. As Q

solves the ðm; kÞ-cyclic problem, we can find at least one

position j, 1 � j � m, such that Q detects u0 cyclicly.
We show now thatQi matches at position j of u (which

is a validposition as 1 � j � m and sðQiÞ ¼ imþ sðQÞ).As

the positions of 1 in u are projectedmodulom to matching

positions of Q, then there is no 0 under any matching

element of Qi and, thus, Qi detects u.

(Consider a seed Qi ¼ ½Q;�ðm�sðQÞÞ�i solving the

ðm � ðiþ 1Þ þ sðQÞ � 1; kÞ-problem. As i > 0, consider ðm �
ðiþ 1Þ þ sðQÞ � 1; kÞ-similarities having all their mis-
matches located inside the interval ½m; 2m� 1�. For each
such similarity, there exists a position j, 1 � j � m, such

that Qi detects it. Note that the span of Qi is at least

mþ sðQÞ, which implies that there is either an entire

occurrence of Q inside the window ½m; 2m� 1�, or a

prefix of Q matching a suffix of the window and the

complementary suffix of Q matching a prefix of the

window. This implies that Q solves the cyclic
ðm; kÞ-problem. tu

Example 2. Observe that the seed ###�# solves the

cyclic ð7; 2Þ-problem. From Lemma 3, this implies that for

every i � 0, the ð11þ 7i; 2Þ-problem is solved by the seed

½###�#;���i of span 5þ 7i. Moreover, for i ¼ 1; 2; 3,

this seed is optimal (maximally weighted) over all seeds

solving the problem.

By a similar argument based on Lemma 3, the

periodic seed ½#####�##;����i solves the

ð18þ 11i; 2Þ-problem. Note that its weight grows as
7
11m compared to 4

7m for the seed from the previous

paragraph. However, when m ! 1, this is not an

asymptotically optimal bound, as we will see later.

The ð18þ 11i; 3Þ-problem is solved by the seed
ð###�#��#;���Þi, as seed ###�#��#

solves the cyclic ð11; 3Þ-problem. For i ¼ 1; 2, the former

is a maximally weighted seed among all solving the

ð18þ 11i; 3Þ-problem.

One question raised by these examples is whether

iterating some seed could provide an asymptotically

optimal solution, i.e., a seed of maximal asymptotic weight.
The following theorem establishes a tight asymptotic bound

on the weight of an optimal seed, for a fixed number of

mismatches. It gives a negative answer to this question, as it

shows that the maximal weight grows faster than any linear

fraction of the similarity size.

Theorem 2. Consider a constant k. Let wðmÞ be the maximal

weight of a seed solving the cyclic ðm; kÞ-problem. Then,

ðm� wðmÞÞ ¼ �ðmk�1
k Þ.

Proof. Note first that all seeds solving a cyclic ðm; kÞ-problem
canbe considered as seeds of spanm. Thenumberof jokers

in any seed Q is then n ¼ m� wðQÞ. The theorem states

that the minimal number of jokers of a seed solving the

ðm; kÞ-problem is �ðmk�1
k Þ for every fixed k.

Lower bound Consider a cyclic ðm; kÞ-problem. The
number Dðm; kÞ of distinct cyclic ðm; kÞ-similarities
satisfies

m
k

� �
m

� Dðm; kÞ; ð7Þ

as every linear ðm; kÞ-similarity has at most m cyclicly

equivalent ones. Consider a seed Q. Let n be the number

of jokers in Q and JQðm; kÞ the number of distinct cyclic

ðm; kÞ-similarities detected by Q. Observe that JQðm; kÞ �
n
k

� �
and if Q solves the cyclic ðm; kÞ-problem, then

Dðm; kÞ ¼ JQðm; kÞ � n

k

� �
: ð8Þ

From (7) and (8), we have

m
k

� �
m

� n

k

� �
: ð9Þ

Using the Stirling formula, this gives nðkÞ ¼ �ðmk�1
k Þ.

Upper bound. To prove the upper bound, we construct
a seed Q that has no more then k �mk�1

k joker positions
and solves the cyclic ðm; kÞ-problem.

We start with the seed Q0 of span m with all matching
positions, and introduce jokers into it in k steps. After
step i, the obtained seed is denoted Qi, and Q ¼ Qk.

Let B ¼ dm1
ke. Q1 is obtained by introducing into Q0

individual jokers with periodicity B by placing jokers at
positions 1; Bþ 1; 2Bþ 1; At step 2, we introduce
into Q1 contiguous intervals of jokers of length B with
periodicity B2, such that jokers are placed at positions
½1 . . .B�; ½B2 þ 1 . . .B2 þB�; ½2B2 þ 1 . . . 2B2 þB�;

In general, at step i (i � k), we introduce into Qi

intervals of Bi�1 jokers with periodicity Bi at positions
½1 . . .Bi�1�; ½Bi þ 1 . . .Bi þBi�1�; . . . (see Fig. 1).

Note that Qi is periodic with periodicity Bi. Note

also that at each step i, we introduce at most bm1�i
kc

intervals of Bi�1 jokers. Moreover, due to overlaps
with already added jokers, each interval adds ðB�
1Þi�1 new jokers.

This implies that the total number of jokers added at
step i is at most m1�i

k � ðB� 1Þi�1 � m1�i
k �m1

k�ði�1Þ ¼ m
k�1
k .

Thus, the total number of jokers in Q is less than k �mk�1
k .

By induction on i, weprove that for any ðm; iÞ-similarity

u (i � k),Qi detectsu cyclicly, that is there is a cyclic shift of

Qi such that all imismatches of u are covered with jokers

introduced at steps 1; . . . ; i.
For i ¼ 1, the statement is obvious, as we can

always cover the single mismatch by shifting Q1 by at
most ðB� 1Þ positions. Assuming that the statement

56 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005

holds for ði� 1Þ, we show now that it holds for i too.
Consider an ðm; iÞ-similarity u. Select one mismatch of
u. By induction hypothesis, the other ði� 1Þ mis-
matches can be covered by Qi�1. Since Qi�1 has period
Bi�1 and Qi differs from Qi�1 by having at least one
contiguous interval of Bi�1 jokers, we can always shift
Qi by j �Bi�1 positions such that the selected mismatch
falls into this interval. This shows that Qi detects u.
We conclude that Q solves the cyclic ðm; iÞ-problem. tu
Using Theorem 2, we obtain the following bound on the

number of jokers for the linear ðm; kÞ-problem.

Lemma 4. Consider a constant k. Let wðmÞ be the maximal
weight of a seed solving the linear ðm; kÞ-problem. Then,
ðm� wðmÞÞ ¼ �ðm k

kþ1Þ.
Proof. To prove the upper bound, we construct a seed Q

that solves the linear ðm; kÞ-problem and satisfies the
asymptotic bound. Consider some l < m that will be
defined later, and let P be a seed that solves the cyclic
ðl; kÞ-problem. Without loss of generality, we assume
sðP Þ ¼ l.

For a real number e � 1, define Pe to be the maximally
weighted seed of span at most le of the form
P 0 � P � � �P � P 00, where P 0 and P 00 are, respectively, a
suffix and a prefix of P . Due to the condition of maximal
weight, wðPeÞ � e � wðP Þ.

We now set Q ¼ Pe for some real e to be defined.
Observe that if e � l � m� l, then Q solves the linear
ðm; kÞ-problem. Therefore, we set e ¼ m�l

l .
FromtheproofofTheorem2,wehave l� wðP Þ � k � lk�1

k .
We then have

wðQÞ ¼ e � wðP Þ � m� l

l
� ðl� k � lk�1

k Þ: ð10Þ

If we set

l ¼ m
k

kþ1; ð11Þ

we obtain

m� wðQÞ � ðkþ 1Þm k
kþ1 � km

k�1
kþ1; ð12Þ

and as k is constant,

m� wðQÞ ¼ Oðm k
kþ1Þ: ð13Þ

The lower bound is obtained similarly to Theorem 2.
Let Q be a seed solving a linear ðm; kÞ-problem, and let
n ¼ m� wðQÞ. From simple combinatorial considera-
tions, we have

m

k

� �
� n

k

� �
� ðm� sðQÞÞ � n

k

� �
� n; ð14Þ

which implies n ¼ �ðm k
kþ1Þ for constant k. tu

The following simple lemma is also useful for construct-
ing efficient seeds.

Lemma 5. Assume that a family F solves an ðm; kÞ-problem. Let
F 0 be the family obtained from F by cutting out l characters
from the left and r characters from the right of each seed of F .
Then F 0 solves the ðm� r� l; kÞ-problem.

Example 3. The ð9þ 7i; 2Þ-problem is solved by the seed
½###;�#���i which is optimal for i ¼ 1; 2; 3. Using
Lemma 5, this seed can be immediately obtained from
the seed ½###�#;���i from Example 2, solving the
ð11þ 7i; 2Þ-problem.

We now apply the above results for the single seed case
to the case of multiple seeds.

For a seed Q considered as a word over f#;�g, we
denote by Q½i� its cyclic shift to the left by i characters.
For example, i f Q ¼ ####�#�##��, then
Q½5� ¼ #�##��####� . The following lemma gives
a way to construct seed families solving bigger
problems from an individual seed solving a smaller
cyclic problem.

Lemma 6. Assume that a seed Q solves a cyclic ðm; kÞ-problem
and assume that sðQÞ ¼ m (otherwise, we pad Q on the right

with ðm� sðQÞÞ jokers). Fix some i > 1. For some L > 0,

consider a list ofL integers 0 � j1 < � � � < jL < m, and define a

family of seeds F ¼< kðQ½jl�Þ
ik >L

l¼1 , where kðQ½jl�Þ
ik stands

for the seed obtained from ðQ½jl�Þ
i by deleting the joker characters

at the left and right edges. Define �ðlÞ ¼ ððjl�1 � jlÞmodmÞ
(or, alternatively, �ðlÞ ¼ ððjl � jl�1ÞmodmÞ) for all l,

1 � l � L. Let m0 ¼ maxfsðkðQ½jl�Þ
ikÞ þ �ðlÞgLl¼1 � 1. Then,

F solves the ðm0; kÞ-problem.

Proof. The proof is an extension of the proof of Lemma 3.
Here, the seeds of the family are constructed in such a
way that for any instance of the linear ðm0; kÞ-problem,
there exists at least one seed that satisfies the property
required in the proof of Lemma 3 and, therefore, matches
this instance. tu
In applying Lemma 6, integers jl are chosen from the

interval ½0;m� in such a way that values sðjjðQ½jl�ÞijjÞ þ �ðlÞ
are closed to each other. We illustrate Lemma 6 with two
examples that follow.

Example 4. Let m ¼ 11, k ¼ 2. Consider the seed Q ¼
####�#�##�� solving the cyclic ð11; 2Þ-problem.
Choose i ¼ 2, L ¼ 2, j1 ¼ 0, j2 ¼ 5. This gives two seeds:

Q1 ¼ kðQ½0�Þ2k ¼ ####�#�##��####�#�##

KUCHEROV ET AL.: MULTISEED LOSSLESS FILTRATION 57

Fig. 1. Construction of seeds Qi from the proof of Theorem 2. Jokers are

represented in white and matching positions in black.

and

Q2¼kðQ½5�Þ2k ¼ #�##��####�#�##��####

of span 20 and 21, respectively, �ð1Þ ¼ 6 and �ð2Þ ¼ 5.
maxf20þ 6; 21þ 5g � 1 ¼ 25. Therefore, family F ¼
fQ1; Q2g solves the ð25; 2Þ-problem.

Example 5. Let m ¼ 11, k ¼ 3. The seed Q ¼ ###�#�
�#��� solving the cyclic ð11; 3Þ-problem. Choose
i ¼ 2, L ¼ 2, j1 ¼ 0, j2 ¼ 4. The two seeds are

Q1 ¼ kðQ½0�Þ2k ¼ ###�#��#���###�#��#

(span 19) and

Q2 ¼ kðQ½4�Þ2k
¼ #��#���###�#��#���###

(span 21), with �ð1Þ ¼ 7 and �ð2Þ ¼ 4. maxf19þ 7;
21þ 4g � 1 ¼ 25. Therefore, family F ¼ fQ1; Q2g solves
the ð25; 3Þ-problem.

4.4 Heuristic Seed Design

Results of Sections 4.1, 4.2, and 4.3 allow one to construct
efficient seed families in certain cases, but still do not allow
a systematic seed design. Recently, linear programming
approaches to designing efficient seed families were
proposed in [19] and in [18], respectively, for DNA and
protein similarity search. However, neither of these
methods aims at constructing lossless families.

In this section, we outline a heuristic genetic program-
ming algorithm for designing lossless seed families. The
algorithm will be used in the experimental part of this
work, that we present in the next section. Note that this
algorithm uses the dynamic programming algorithms
discussed in Section 3. Since the algorithm uses standard
genetic programming techniques, we give only a high-level
description here without going into all details.

The algorithm tries to iteratively improve characteristics
of a population of seed families until it finds a small family
that detects all ðm; kÞ-similarities (i.e., is lossless). The first
step of each iteration is based on screening current families
against a set of difficult similarities that are similarities that
have been detected by fewer families. This set is continually
reordered and updated according to the number of families
that do not detect those similarities. For this, each set is
stored in a tree and the reordering is done using the list-as-
a-tree principle [20]: Each time a similarity is not detected by
a family, it is moved towards the root of the tree such that
its height is divided by two.

For those families that pass through the screening, the
number of undetected similarities is computed by the
dynamic programming algorithm of Section 3.2. The family
is kept if it produces a smaller number than the families
currently known. An undetected similarity obtained during
this computation is added as a leaf to the tree of difficult
similarities.

To detect seeds to be improved inside a family, we
compute the contribution of each seed by the dynamic
programming algorithm of Section 3.3. The seeds with the
least contribution are then modified with a higher prob-
ability. In general, the population of seed families is

evolving by mutating and crossing over according to the set
of similarities they do not detect. Moreover, random seed
families are regularly injected into the population in order
to avoid local optima.

The described heuristic procedure often allows efficient
or even optimal solutions to be computed in a reasonable
time. For example, in 10 runs of the algorithm, we found
three of the six existing families of two seeds of weight 14
solving the ð25; 2Þ-problem. The whole computation took
less than 1 hour, compared to a week of computation
needed to exhaustively test all seed pairs. Note that the
randomized-greedy approach (incremental completion of
the seed set by adding the best random seed) applied a
dozen of times to the same problem yielded only sets of
three and sometimes four, but never two seeds, taking
about 1 hour at each run.

5 EXPERIMENTS

We describe two groups of experiments that we made. The
first one concerns the design of efficient seed families, and
the second one applies a multiseed lossless filtration to the
identification of unique oligos in a large set of EST
sequences.

5.1 Seed Design Experiments

We considered several ðm; kÞ-problems. For each problem,
and for a fixed number of seeds in the family, we computed
families solving the problem and realizing the largest
possible seed weight (under a natural assumption that all
seeds in a family have the same weight). We also kept track
of the ways (periodic seeds, genetic programming heur-
istics, exhaustive search) in which those families can be
computed.

Tables 1 and 2 summarize some results obtained for the
ð25; 2Þ-problem and the ð25; 3Þ-problem, respectively. Fa-
milies of periodic seeds (that can be found using Lemma 6)
are marked with p, those that are found using a genetic
algorithm are marked with g, and those which are obtained
by an exhaustive search are marked with e. Only in this
latter case, the families are guaranteed to be optimal.
Families of periodic seeds are shifted according to their
construction (see Lemma 6).

Moreover, to compare the selectivity of different families
solving a given ðm; kÞ-problem, we estimated the probability
� for at least one of the seeds of the family to match at a
given position of a uniform Bernoulli four-letter sequence.
This has been done using the inclusion-exclusion formula.

Note that the simple fact of passing from a single seed to
a two-seed family results in a considerable gain in
efficiency: In both examples shown in the tables there a
change of about one order magnitude in the selectivity
estimator �.

5.2 Oligo Selection Using Multiseed Filtering

An important practical application of lossless filtration is
the selection of reliable oligonucleotides for DNA micro-
array experiments. Oligonucleotides (oligos) are small DNA
sequences of fixed size (usually ranging from 10 to 50)
designed to hybridize only with a specific region of the
genome sequence. In microarray experiments, oligos are
expected to match ESTs that stem from a given gene and not

58 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005

to match those of other genes. As the first approximation,
the problem of oligo selection can then be formulated as the
search for strings of a fixed length that occur in a given
sequence but do not occur, within a specified distance, in
other sequences of a given (possibly very large) sample.
Different approaches to this problem apply different
distance measures and different algorithmic techniques
[21], [22], [23], [24]. The experiments we briefly present here
demonstrate that the multiseed filtering provides an
efficient computation of candidate oligonucleotides. These
should then be further processed by complementary
methods in order to take into account other physico-
chemical factors occurring in hybridisation, such as the
melting temperature or the possible hairpin structure of
palindromic oligos.

Here, we adopt the formalization of the oligo selection
problem as the problem of identifying in a given sequence

(or a sequence database) all substrings of lengthm that have
no occurrences elsewhere in the sequence within the
Hamming distance k. The parameters m and k were set to
32 and 5, respectively. For the ð32; 5Þ-problem, different seed
families were designed and their selectivity was estimated.
Those are summarized in the table in Fig. 2, using the same
conventions as in Tables 1 and 2 above. The family
composed of six seeds of weight 11 was selected for the
filtration experiment (shown in Fig. 2).

The filtering has been applied to a database of rice EST
sequences composed of 100,015 sequences for a total length
of 42,845,242 bp.1 Substrings matching other substrings
with five substitution errors or less were computed. The
computation took slightly more than one hour on a

KUCHEROV ET AL.: MULTISEED LOSSLESS FILTRATION 59

TABLE 2
Seed Families for (25,3)-Problem

1. Source: http://bioserver.myongji.ac.kr/ricemac.html, The Korea Rice
Genome Database.

TABLE 1
Seed Families for (25,2)-Problem

Pentium2 4 3GHz computer. Before applying the filtering

using the family for the ð32; 5Þ-problem, we made a rough
prefiltering using one spaced seed of weight 16 to detect,
with a high selectivity, almost identical regions. Sixty-five
percent of the database has been discarded by this
prefiltering. Another 22 percent of the database has been
filtered out using the chosen seed family, leaving the
remaining 13 percent as oligo candidates.

6 CONCLUSION

In this paper, we studied a lossless filtration method based

on multiseed families and demonstrated that it represents

an improvement compared to the single-seed approach

considered in [1]. We showed how some important

characteristics of seed families can be computed using the

dynamic programming. We presented several combinator-

ial results that allow one to construct efficient families

composed of seeds with a periodic structure. Finally, we

described a large-scale computational experiment of de-

signing reliable oligonucleotides for DNA microarrays. The

obtained experimental results provided evidence of the

applicability and efficiency of the whole method.

The results of Sections 4.1, 4,2, and 4.3 establish several

combinatorial properties of seed families, but many more of

them remain to be elucidated. The structure of optimal or

near-optimal seed families can be reduced to number-

theoretic questions, but this relation remains to be clearly

established. In general, constructing an algorithm to

systematically design seed families with quality guarantee

remains an open problem. Some complexity issues remain

open too: For example, what is the complexity of testing if a

single seed is lossless for given m; k? Section 3 implies a

time bound exponential on the number of jokers. Note that

for multiple seeds, computing the number of detected

similarities is NP-complete [16, Section 3.1].

Another direction is to consider different distance

measures, especially the Levenstein distance, or at least to

allow some restricted insertion/deletion errors. The method

proposed in [25] does not seem to be easily generalized to

multiseed families, and a further work is required to

improve lossless filtering in this case.

ACKNOWLEDGMENTS

G. Kucherov and L. Noé have been supported by the French
Action Spécifique “Algorithmes et Séquences” of CNRS. A part

of this work has been done during a stay of M. Roytberg at

LORIA, Nancy, supported by INRIA. M. Roytberg has been

supported by the Russian Foundation for Basic Research

(project nos. 03-04-49469, 02-07-90412) and by grants from

the RF Ministry for Industry, Science, and Technology (20/

2002, 5/2003) and NWO. An extended abstract of this work

has been presented to the Combinatorial Pattern Matching

Conference (Istanbul, July 2004).

REFERENCES

[1] S. Burkhardt and J. Kärkkäinen, “Better Filtering with Gapped
q-Grams,” Fundamenta Informaticae, vol. 56, nos. 1-2, pp. 51-70,
2003, preliminary version in Combinatorial Pattern Matching
2001.

[2] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings
—Practical On-Line Search Algorithms for Texts and Biological
Sequences. Cambridge Univ. Press, 2002.

[3] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, no. 17, pp. 3389-3402, 1997.

[4] B. Ma, J. Tromp, and M. Li, “PatternHunter: Faster and More
Sensitive Homology Search,” Bioinformatics, vol. 18, no. 3, pp. 440-
445, 2002.

[5] S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison,
D. Haussler, and W. Miller, “Human—Mouse Alignments with
BLASTZ,” Genome Research, vol. 13, pp. 103-107, 2003.

[6] L. Noé and G. Kucherov, “Improved Hit Criteria for DNA Local
Alignment,” BMC Bioinformatics, vol. 5, no. 149, Oct. 2004.

[7] P. Pevzner and M. Waterman, “Multiple Filtration and Approx-
imate Pattern Matching,” Algorithmica, vol. 13, pp. 135-154, 1995.

[8] A. Califano and I. Rigoutsos, “Flash: A Fast Look-Up Algorithm
for String Homology,” Proc. First Int’l Conf. Intelligent Systems for
Molecular Biology, pp. 56-64, July 1993.

[9] J. Buhler, “Provably Sensitive Indexing Strategies for Biosequence
Similarity Search,” Proc. Sixth Ann. Int’l Conf. Computational
Molecular Biology (RECOMB ’02), pp. 90-99, Apr. 2002.

[10] U. Keich, M. Li, B. Ma, and J. Tromp, “On Spaced Seeds for
Similarity Search,” Discrete Applied Math., vol. 138, no. 3, pp. 253-
263, 2004.

[11] J. Buhler, U. Keich, and Y. Sun, “Designing Seeds for Similarity
Search in Genomic DNA,” Proc. Seventh Ann. Int’l Conf. Computa-
tional Molecular Biology (RECOMB ’03), pp. 67-75, Apr. 2003.

[12] B. Brejova, D. Brown, and T. Vinar, “Vector Seeds: An Extension to
Spaced Seeds Allows Substantial Improvements in Sensitivity and
Specificity,” Proc. Third Int’l Workshop Algorithms in Bioinformatics
(WABI), pp. 39-54, Sept. 2003.

[13] G. Kucherov, L. Noé, and Y. Ponty, “Estimating Seed Sensitivity
on Homogeneous Alignments,” Proc. IEEE Fourth Symp. Bioinfor-
matics and Bioeng. (BIBE 2004), May 2004.

[14] K. Choi and L. Zhang, “Sensitivity Analysis and Efficient Method
for Identifying Optimal Spaced Seeds,” J. Computer and System
Sciences, vol. 68, pp. 22-40, 2004.

[15] M. Csürös, “Performing Local Similarity Searches with Variable
Length Seeds,” Proc. 15th Ann. Combinatorial Pattern Matching
Symp. (CPM), pp. 373-387, 2004.

60 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 1, JANUARY-MARCH 2005

Fig. 2. Computed seed families for the ð32; 5Þ-problem and the chosen family (six seeds of weight 11).

[16] M. Li, B. Ma, D. Kisman, and J. Tromp, “PatternHunter II: Highly
Sensitive and Fast Homology Search,” J. Bioinformatics and
Computational Biology, vol. 2, no. 3, pp. 417-440, Sept. 2004.

[17] Y. Sun and J. Buhler, “Designing Multiple Simultaneous Seeds for
DNA Similarity Search,” Proc. Eighth Ann. Int’l Conf. Research in
Computational Molecular Biology (RECOMB 2004), pp. 76-84, Mar.
2004.

[18] D.G. Brown, “Multiple Vector Seeds for Protein Alignment,” Proc.
Fourth Int’l Workshop Algorithms in Bioinformatics (WABI), pp. 170-
181, Sept. 2004.

[19] J. Xu, D. Brown, M. Li, and B. Ma, “Optimizing Multiple Spaced
Seeds for Homology Search,” Proc. 15th Symp. Combinatorial
Pattern Matching, pp. 47-58, 2004.

[20] J. Oommen and J. Dong, “Generalized Swap-with-Parent Schemes
for Self-Organizing Sequential Linear Lists,” Proc. 1997 Int’l Symp.
Algorithms and Computation (ISAAC ’97), pp. 414-423, Dec. 1997.

[21] F. Li and G. Stormo, “Selection of Optimal DNA Oligos for Gene
Expression Arrays,” Bioinformatics, vol. 17, pp. 1067-1076, 2001.

[22] L. Kaderali and A. Schliep, “Selecting Signature Oligonucleotides
to Identify Organisms Using DNA Arrays,” Bioinformatics, vol. 18,
no. 10, pp. 1340-1349, 2002.

[23] S. Rahmann, “Fast Large Scale Oligonucleotide Selection Using
the Longest Common Factor Approach,” J. Bioinformatics and
Computational Biology, vol. 1, no. 2, pp. 343-361, 2003.

[24] J. Zheng, T. Close, T. Jiang, and S. Lonardi, “Efficient Selection of
Unique and Popular Oligos for Large EST Databases,” Proc. 14th
Ann. Combinatorial Pattern Matching Symp. (CPM), pp. 273-283,
2003.

[25] S. Burkhardt and J. Karkkainen, “One-Gapped q-Gram Filters for
Levenshtein Distance,” Proc. 13th Symp. Combinatorial Pattern
Matching (CPM ’02), vol. 2373, pp. 225-234, 2002.

Gregory Kucherov received the PhD degree in
computer science in 1988 from the USSR
Academy of Sciences, and a Habilitation degree
in 2000 from the Henri Poincaré University in
Nancy. He is a senior INRIA researcher with the
LORIA research unit in Nancy, France. For the
last 10 years, he has been doing research on
word combinatorics, text algorithms and combi-
natorial algorithms for bioinformatics, and com-
putational biology.

Laurent Noé studied computer science at the
ESIAL engineering school in Nancy, France. He
received the MS degree in 2002 and is currently
a PhD student in computational biology at
LORIA.

Mikhail Roytberg received the PhD degree in
computer science in 1983 from Moscow State
University. He is a leader of the Computational
Molecular Biology Group in the Institute of
Mathematical Problems in Biology of the Rus-
sian Academy of Sciences at Pushchino, Rus-
sia. During the last years, his main research field
has been the development of algorithms for
comparative analysis of biological sequences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KUCHEROV ET AL.: MULTISEED LOSSLESS FILTRATION 61

