
On Subset Seeds for Protein Alignment
Mikhail Roytberg, Anna Gambin, Laurent Noé, Slawomir Lasota, Eugenia Furletova,

Ewa Szczurek, and Gregory Kucherov

Abstract—We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied

is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different

design methods and use them to construct several alphabets. We then perform a comparative analysis of seeds built over those

alphabets and compare them with the standard BLASTP seeding method [2], [3], as well as with the family of vector seeds proposed in

[4]. While the formalism of subset seeds is less expressive (but less costly to implement) than the cumulative principle used in BLASTP

and vector seeds, our seeds show a similar or even better performance than BLASTP on Bernoulli models of proteins compatible with

the common BLOSUM62 matrix. Finally, we perform a large-scale benchmarking of our seeds against several main databases of

protein alignments. Here again, the results show a comparable or better performance of our seeds versus BLASTP.

Index Terms—Protein sequences, protein databases, local alignment, similarity search, seeds, subset seeds, multiple seeds, seed

alphabet, sensitivity, selectivity.

Ç

1 INTRODUCTION

SIMILARITY search in protein sequences is probably the
most classical bioinformatics problem, and a commonly

used algorithmic solution is implemented in the ubiquitous
BLAST software [2], [3]. On the other hand, similarity search
algorithms for nucleotide sequences (DNA and RNA)
underwent several years ago a significant improvement
due to the idea of spaced seeds and its various generalizations
[5], [6], [7], [8], [9], [10]. This development, however, has
little affected protein sequence comparison, although
improving the speed/precision trade-off for protein search
would be of great value for numerous bioinformatics
projects. Due to a bigger alphabet size, protein seeds are
much shorter (typically 2-5 letters instead of 10-20 letters in
the DNA case) and also letter identity is much less relevant
in defining hits than in the DNA case. For these reasons, the
spaced seeds technique might seem not to apply directly to
protein sequence comparison.

Recall that BLAST applies quite different approaches to
protein and DNA sequences to define a hit. In the DNA case,
a hit is defined as a short pattern of identically matching
nucleotides, whereas in the protein case, a hit is defined
through a cumulative contribution of a few amino acid
matches (not necessarily identities) using a given scoring
matrix. Defining a hit through an additive contribution of

several positions is captured by a general formalism of vector
seeds proposed in [11]. On the other hand, it has been
understood [7], [12], [13], [14], [15] that using simultaneously
a family of seeds instead of a single seed can further improve
the sensitivity/selectivity ratio. Papers [4], [16] both propose
solutions using a family of vector seeds to surpass the
performance of BLAST.

However, using the principle of cumulative score over
several adjacent positions has an algorithmic cost. Defining
a hit through a pattern of exact letter matches allows for a
direct hashing scheme, where each key of the query sequence
is associated with a unique hash table entry pointing to the
positions of the subject sequence (database) where the key
can hit. Usually these positions are stored in consecutive
memory cells within the hash table.

On the other hand, defining a hit through a cumulative
contribution of several positions leads to an additional
precomputed table that stores, for each key, its neighborhood,
i.e., the list of subject keys (or corresponding hash table
entries) with which it can form a hit. For example, in a
standard BLASTP setting (Blosum62 scoring matrix with
threshold 11 for cumulative score of three positions), the
expectation, computed according to the Bernoulli sequence
model, of the number of neighbors of a key is 19.34, i.e., that
many accesses to the hash table are required for each key.
For four positions and threshold 18, as in the case of seeds
from [4], a key hits expectedly 15.99 keys and this number
grows up to 45.59 when the score threshold decreases to 16.
This raises an obvious memory problem, for example, for
key size 4 and score threshold 18, the total size of
neighborhoods is 7,609,575, and for key size 5, the
neighborhood table may simply not fit into the memory.
Another related implementation problem is cache usage:
different keys of a neighborhood generally correspond to
remote segments of the hash table and their processing
gives rise to cache misses that cause additional latencies.

These implementation issues may become a bottleneck in
large-scale protein comparisons. Furthermore, solving
these problems may be very helpful in different specific

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009 483

. M. Roytberg and E. Furletova are with the Institute of Mathematical
Problems in Biology, Pushchino, Moscow Region 142290, Russia.
E-mail: mroytberg@mail.ru, janny51@rambler.ru.

. A. Gambin and S. Lasota are with the Institute of Informatics, Warsaw
University, Banacha 2, 02-097, Poland.
E-mail: {aniag, s.lasota}@mimuw.edu.pl.

. L. Noé and G. Kucherov are with LIFL/CNRS/INRIA, Bât. M3, Campus
Scientifique, 59655 Villeneuve d’Ascq Cédex, France.
E-mail: {laurent.noe, gregory.kucherov}@lifl.fr.

. E. Szczurek is with the Max Planck Institute for Molecular Genetics,
Computational Molecular Biology, Ihnestr. 73, 14195 Berlin, Germany.
E-mail: ewa.szczurek@molgen.mpg.de.

Manuscript received 11 Apr. 2008; revised 21 Oct. 2008; accepted 21 Dec.
2008; published online 8 Jan. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2008-04-0068.
Digital Object Identifier no. 10.1109/TCBB.2009.4.

1545-5963/09/$25.00 � 2009 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

experimental setups, such as in mapping protein compar-
ison algorithms to specialized computer architecture (see,
e.g., [17], [18]) where memory usage may be a crucial issue.

In [1], we proposed a new concept of subset seeds that can
be viewed as an intermediate between ordinary spaced
seeds and vector seeds: subset seeds allow one to
distinguish between different types of mismatches (or
matches) but still treat seed positions independently rather
than cumulatively. Distinguishing different mismatches is
not done by scoring them, but by extending the seed
alphabet such that each seed letter specifies different sets of
mismatches. For example, in the DNA case, it is beneficial to
distinguish between transition mutations (A$ G, C$ T)
and the others (transversions) [19], [20]. This leads (at least
in the case of transitive seed alphabets defined in this paper)
to the possibility of using the direct hashing.

Since the protein alphabet is much larger than that of
DNA, subset seeds provide a very attractive seeding option
for protein alignment. In this paper, we study the
performance of subset seeds applied to protein sequences
and compare it to existing seeding techniques of BLASTP

and vector seeds.
Note again that subset seeds are less expressive than

BLAST seeds or vector seeds in general, but in return, admit
a more efficient implementation. Besides treating positions
independently, subset seeds replace amino acid substitu-
tion scores by simply distinguishing different classes of
mismatches. Therefore, another way to state the motivation
of this work is to ask whether scores are really necessary at
the seeding stage of protein alignment. We will show that
with a reasonable level of precision, the answer to this
question is negative.

In the paradigm of subset seeds, each seed letter specifies
a set of amino acid pairs matched by this letter. Therefore, a
crucial question is the design of an appropriate seed alphabet,
which is one of the main problems we study in this paper.
In fine, the quality of an alphabet is determined by the
quality of the best seeds that can be constructed over this
alphabet. The latter is already a complex optimization
problem that is usually solved in practice by heuristic
methods. (For a formal analysis of seed design problem, we
refer to the recent paper [21] and references therein.) The
problem of alphabet design studied in this paper presents
an additional complexity as it introduces an additional
dimension of the search space (set of possible alphabets),
and additionally requires a study of selectivity/sensitivity
dependencies rather than simply maximizing the sensitivity
for a class of seeds with a given selectivity. In this paper, we
propose several heuristic methods that lead to the design of
efficient seed alphabets and corresponding seeds.

The paper is organized as follows: In Section 2, we
introduce some probabilistic notions we need to reason
about seed efficiency. Section 3 introduces the first simple
approach to design a seed alphabet, which, however, does
not lead to so-called transitive seeds, wich are useful in
practice. Section 4 presents three different approaches to
designing transitive seed alphabets, based on a predefined
(Section 4.1) or newly designed (Section 4.2) hierarchical
clustering of amino acids, as well as on a nonhierarchical
clustering (Section 4.3). Section 5 describes comparative
experiments made with the designed seeds, obtained both
on probabilistic models and on different protein data banks.

2 PRELIMINARIES

Throughout the paper, we denote by

� ¼ fA; C; D; E; F; G;H; I; K; L; M; N; P; Q; R; S; T; V; W; Yg
¼ faigi¼1::20

the alphabet of amino acids.
In most general terms, a (subset) seed letter � is defined as

any symmetric and reflexive binary relation on �. Let B be a
seed alphabet, i.e., a collection of subset seed letters. Then, a
subset seed � ¼ �1 . . .�k is a word over B, where k is called
the span of �. � defines a symmetric and reflexive binary
relation on words of �k (called keys): For s1; s2 2 �k, s1 �� s2

iff 8i 2 ½1::k�, we have hs1½i�; s2½i�i 2 �i. In this case, we say
that seed � hits the pair s1; s2.

For practical reasons, we would like seed letters to define
a transitive relation, in addition. This induces an equivalence
relation on keys, which is very convenient and allows for an
efficient indexing scheme (see Section 1). In this paper, we
will be mainly interested in transitive seed letters, but we
will also study the nontransitive case in order to see how
restrictive the transitivity condition is.

The quality of a seed letter or of a seed is characterized
by two main parameters: sensitivity and selectivity. They are
defined through background and foreground probabilistic
models of protein alignments. Foreground probabilities are
assumed to represent the distribution of amino acid
matches in proteins of interest, when two homologous
proteins are aligned together. Background probabilities, on
the other hand, represent the distribution of amino acid
matches in random alignments, when two proteins are
randomly aligned together.

In this paper, we restrict ourselves to Bernoulli models of
proteins and protein alignments, although some of the
results we will present can be extended to Markov models.

Assume that we are given background probabilities

fb1; . . . ; b20g of amino acids in protein sequences under

interest. The background probability of a seed letter � is

defined by bð�Þ ¼
P
ðai;ajÞ2� bibj. The selectivity of � is 1�

bð�Þ and the weight of � is defined by

wð�Þ ¼ log bð�Þ
log bð#Þ; ð1Þ

where # ¼ fha; aija 2 �g is the “identity” seed letter. For a

seed � ¼ �1 . . .�k, the background probability of � is

bð�Þ ¼
Qk

i¼1 bð�iÞ, the selectivity of � is 1� bð�Þ, and the

weight of � is wð�Þ ¼ logbð#Þ bð�Þ ¼
Pk

i¼1 wð�iÞ. Note that the

weight here generalizes the weight of classical spaced seeds

[22] defined as the number of “identity” letters it contains.

Let fij be the probability to see the pair hai; aji aligned in

a target alignment. The foreground probability of a seed letter

� is defined by fð�Þ ¼
P
ðai;ajÞ2� fij. The sensitivity of a seed

� is defined as the probability to hit a random target

alignment.1 Assume that target alignments are specified by

484 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

1. Note that our definitions of sensitivity and selectivity are not
symmetric: sensitivity is defined with respect to the entire alignment and
selectivity with respect to a single alignment position. These definitions
better capture the intended parameters we want to measure. However,
selectivity could also be defined with respect to the entire alignment. We
could suggest the term specificity for this latter definition.

a length N . Then, the sensitivity of a seed � ¼ �1 . . .�k is the

probability that a randomly drawn gapless alignment (i.e.,

string of pairs hai; aji) of length N contains a fragment of

length k which is matched by �. In [1], we proposed a

general algorithm to efficiently compute the seed sensitivity

for a broad class of target alignment models. This algorithm

will be used in the experimental part of this work.
The general problem of seed design is to obtain seeds

with good sensitivity/selectivity trade-off. Even within a
fixed seed formalism, the quality of a seed is dependent on
the chosen selectivity value. This is why we will always be
interested in computing efficient seeds for a large range of
selectivity levels.

3 DOMINATING SEED LETTERS

Our main question is how to choose seed letters that form
good seeds? Intuitively, “good letters” are those that best
distinguish foreground and background letter alignments.

For each letter �, consider its foreground and back-

ground probabilities fð�Þ and bð�Þ, respectively. Intuitively,

we would like to have letters � with large fð�Þ and small

bð�Þ. A letter � is said to dominate a letter � if fð�Þ � fð�Þ
and bð�Þ � bð�Þ. Observe that in this case, � can be removed

from consideration, as it can always be advantageously

replaced by �.
Consider all amino acid pairs ðai; ajÞ ordered by

descending likelihood ratio fij=bibj. Consider the set of
pairs RðtÞ ¼ fðai; ajÞ j fij=bibj > tg. Then the following
statement holds.2

Proposition 1. RðtÞ cannot be dominated by any other letter.

Proof. Assume by contradiction that RðtÞ is dominated by

some letter �, i.e., fð�Þ � fðRðtÞÞ and bð�Þ � bðRðtÞÞ.
Consider � ¼ RðtÞ n � and � ¼ � nRðtÞ. Clearly, fð�Þ �
fð�Þ and bð�Þ � bð�Þ. On the other hand, 8ðai; ajÞ 2 �,

fij=bibj > t, and 8ðai; ajÞ 2 �, fij=bibj � t. This implies that

fð�Þ ¼
P
ðai;ajÞ2� fij > t

P
ðai;ajÞ2� bibj ¼ tbð�Þ and similarly

fð�Þ � tbð�Þ. We then have fð�Þ > tbð�Þ � tbð�Þ � fð�Þ,
which contradicts fð�Þ � fð�Þ. tu
Proposition 1 suggests that letters RðtÞ are good

candidates to be included in the seed alphabet.
Resulting alphabet. We computed the likelihood ratio

for all amino acid pairs, based on practical values of
background and foreground probabilities computed in
accordance with the BLOSUM62 matrix (see Section 5.1).
Not surprisingly, amino acid identities (pairs ha; ai) have
highest likelihood scores varying from 38.11 for tryptophan
(W) down to 3.69 for valine (V).

Among nonidentical pairs, only 25 have a score greater
than 1 (Fig. 1). A quick analysis shows that these do not
form a transitive relation, and therefore, Rð1Þ does not
verify the transitivity requirement. This is also the case for
other threshold values.

We analyzed a family of threshold letters RðtÞ for t
ranging from 0 to 3 with step 0.05. At the extremities of this

interval, Rð0Þ is the “joker” letter admitting all amino acid
pairs and Rð3Þ is the letter corresponding to the exact
match relation. Among all these letters, there are only
34 different ones. This alphabet of 34 letters (data not
shown), denoted by Nontransitive, will be used in the
experimental part of the paper (Section 5) in order to study
how restrictive the requirement of transitive letters is, i.e.,
how much better are general seeds than those obtained
with the restriction of transitivity.

4 TRANSITIVE SEED ALPHABETS

In the case of transitive seed alphabets, every letter � 2 B is
a partition of the amino acid alphabet �. In other words, the
binary relation associated with each letter (cf., Section 2) is
an equivalence relation. Transitive alphabets represent the
practical case when each amino acid is uniquely mapped to
its equivalence class. This, in turn, allows for an efficient
hashing scheme during the stage of seed search, when
different entries of the hash table index nonintersecting
subsets of keys.

In Sections 4.1 and 4.2, we explore transitive seed
alphabets satisfying an additional “hierarchy condition”:
for any two seed letters �1; �2 2 B corresponding to
partitions P�1

; P�2
, respectively, one of P�1

; P�2
is a refine-

ment of the other. Formally,

for any �1; �2 2 B; either �1 � �2 or �2 � �1; ð2Þ

where � � � means that every set of P� is a subset of some
set of P�.

The purpose of the above requirement is to define seed
letters using a biologically significant hierarchical cluster-
ing of amino acids represented by a tree. In Section 4.1, we
will use a predefined hierarchical clustering to design
efficient seed alphabets. Then in Section 4.2, we construct
our own clustering based on appropriate background and
foreground models of amino acids distribution. Finally, in

ROYTBERG ET AL.: ON SUBSET SEEDS FOR PROTEIN ALIGNMENT 485

Fig. 1. Amino acid pairs forming letterRð1Þ of alphabet Nontransitive.

2. It is interesting to point out the relationship with the Neyman-Pearson
lemma which is a more general formulation of this statement.

Section 4.3, we lift condition (2) and study “nonhierarch-
ical” seed alphabets.

4.1 Transitive Alphabets Based
on a Predefined Clustering

Assume that we have a biologically significant hierarchical
clustering tree which is a rooted binary tree T with 20 leaves
labeled by amino acids. Such trees have been proposed in
[23], [24] based on different similarity relations. The
hierarchical tree derived from [23] is shown in Fig. 2. The
tree, obtained with a purely bioinformatics analysis, groups
together amino acids with similar biochemical properties,
such as hydrophobic amino acids L,M,I,V, hydrophobic
aromatic amino acids F,Y,W, amino acids with an alcohol
group S,T, or charged/polar amino acids E,D,N,Q. A
similar grouping has been obtained in [24].

A seed letter is defined here as a subset � of nodes of T
such that

1. � contains all leaves and
2. for a node v, if v 2 �, then all descendants of v belong

to � too.

In other words, a seed letter can be thought of as a
“horizontal cut” of the tree. Clearly, each letter induces a
partition on the set of leaves (amino acids). For example,
for the tree in Fig. 2, a letter defined by the cut through
nodes C, FYW, MLIV, G, P, ATS, NHQEDRK corresponds
to the partition {{C},{FYW},{MLIV},{G},{P},{ATS},

{NHQEDRK}}.
Seed letters are naturally ordered by inclusion. The

smallest one is the “identity” seed letter #, containing
only the leaves. The largest one is the “joker” seed letter
, containing all the nodes of T . One particular seed letter

is obtained by removing from the root node. We denote

it by @.
Observe that each seed letter � represents naturally an

equivalence relation on �: ai and aj are related iff their

common ancestor belongs to �. It is identity relation in case

of # and full relation in case of .
Following condition (2), a hierarchical seed alphabet is a

family B of seed letters such that

for every �1; �2 2 B; either �1 � �2 or �2 � �1: ð3Þ

Hence, in mathematical terms, a seed alphabet is a chain

in the inclusion ordering of seed letters. Each hierarchical

alphabet can be obtained by a series of refinements (set

splittings) of its least refined letter.
Let us analyze what are the maximal seed alphabets

w.r.t. inclusion. Clearly, each maximal seed alphabet B
always contains the smallest and the largest seed letters #

and . Interestingly, each maximal alphabet B contains also

@, as @ is comparable (by inclusion) to any other seed letter.
It can be shown that under the above definitions, any

maximal seed alphabet contains exactly 20 letters that can

be obtained by a stepwise merging of two subtrees rooted at

immediate descendants of some node v into the subtree

rooted at v. Therefore, since a binary tree with n leaves

contains n� 1 internal nodes, a maximal seed alphabet

contains precisely 20 letters and can be specified by a

permutation of internal nodes in tree T .
Seed alphabets and constrained independence systems.

It is interesting to observe that the set of seed alphabets

forms a constrained independence system [25]. An indepen-

dence system is a collection of subsets I � 2E over a ground

set E, called independent sets, such that 1) ; 2 I and 2) if

486 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Fig. 2. Hierarchical tree derived from [23].

X 2 I and Y � X, then Y 2 I . A maximal (w.r.t. inclusion)
independent set is called a base.

Let E be the set of all possible seed letters as defined
earlier. Then, alphabets verifying (3) form an independence
system, where bases correspond to maximal seed alpha-
bets. Moreover, seed alphabets verify two additional
conditions of constrained independence system [25]: 3) if
X;Y 2 I with jY j < jXj, then there is an element e 2 E n Y
such that Y [feg 2 I and 4) the cardinality of every
minimal (w.r.t inclusion) set of 2E n I is 2.

The interest in this observation follows from results of [25]
showing that some optimization problems on constrained
independence systems can be solved efficiently by greedy
algorithms. Assume that we have a score function s : E ! R
that we extend additively to independent sets by sðXÞ ¼P

e2X sðeÞ. For an independence system I , we want to find a
base X 2 I with optimal (maximal or minimal) sðXÞ. For
constrained independence systems, it was proved [25] that
the greedy algorithm yields a base which is locally optimal,
i.e., better than any neighbor base Y ¼ ðX n f�1gÞ [f�2g for
some �1 2 X, �2 2 E nX. Here, the greedy algorithm starts
with the empty set and iteratively adds most optimal
elements ofE as long as the current set remains independent.
The absolute optimum is hard to compute in general, and the
greedy solution is an approximation of it.

Assigning letter score. The above setting requires that
each letter � is assigned a score that, intuitively, should
measure the “usefulness” of � in a potential alphabet.
Defining such a measure is a difficult question as there are
too many potential alphabets and we cannot check them all
exhaustively. Therefore, we chose to consider only small
alphabets B�, containing � together with a few other letters
that are always present in a good seed alphabet. These
letters are f ;@;#g. The experiments reported in Section 5
use the alphabet B� ¼ f ; �g.

Given B�, we define the score of � as follows: We
enumerate all seeds of a given span (typically, 5 or 6) over
B�, and compute the sensitivity and selectivity of each seed
according to the protocol described in Section 5.2. Each seed
is then associated with a point on a unit square with
coordinates corresponding to sensitivity and selectivity (see
plots in Fig. 6). The distance of this point to point ð1; 1Þ,
denoted by �ð�Þ, measures how good the sensitivity and
selectivity jointly are. Besides, the number of occurrences of�
in the seed should be taken into account. Overall, we chose to
compute the score of a letter by the following formula:

wð�Þ ¼
X
�

occ�ð�Þ 	
ffiffiffi
2
p
� �ð�Þ

� �
;

where the sum is taken over all seeds � of a given span and
occ�ð�Þ is the number of occurrences of � in �.

Greedy algorithm. Once every seed letter has been
assigned a score, we compute the greedy solution as follows:
We compute the maximal subset L of locally good letters, i.e.,
letters � that score better than any letter �0 such that
f�; �0g 62 I . It can be shown that this subset is independent
and is included in the solution computed by the greedy
algorithm. Then we redefine E and I by E0 ¼ E n L and
I0 ¼ fZ � E0 j Z [L 2 Ig, and apply the algorithm recur-
sively to the independence system ðE0; I0Þ. The union of all

sets L of locally good letters computed along this procedure
forms the solution of the greedy algorithm.

Resulting alphabet. Fig. 3 shows alphabet Transi-

tive-predefined designed through the approach of this
section. The alphabet has been designed from the tree of
Fig. 2 and using the alphabet B� ¼ f ; �g for assigning the
score of a letter �. Each line in Fig. 2 corresponds to a letter
(amino acid partition). Among alphabets obtained by
varying different parameters in scoring individual letters
(such as the alphabet and seed spans used in the scoring
procedure), alphabet Transitive-predefined pro-
duced best seeds and will be used in the experimental part
of this work (Section 5).

4.2 Transitive Alphabets Using an Ab Initio
Clustering Method

Hierarchical clustering of amino acids. A prerequisite to
the approach of Section 4.1 is a given tree describing a
hierarchical clustering of amino acid based on some
similarity measure. In this section, we describe an approach
that constructs ab initio a hierarchical clustering of amino
acids, using a likelihood measure. The approach can be seen
as constructing a hierarchy of connected components of a
graph based on the likelihood relation considered in
Section 3 (see Fig. 1) trying to build components with high
likelihood values.

As in Section 4.1, our goal here is to construct a family of
seed letters verifying the hierarchy condition (2). This
family will be obtained with a simple greedy neighbor-
joining clustering algorithm. We start with the partition of
amino acids into 20 singletons. This partition corresponds to
the # letter. For a current partition P ¼ fC1; . . . ; Cng,
iteratively apply the following procedure:

1. For each pair of sets Ck, C‘,

a. consider the set BridgeðCk; C‘Þ ¼ fðai; ajÞjai 2
Ck; aj 2 C‘g.

b. compute ForeBridgeProbðk; ‘Þ ¼
P
ffijjai 2 Ck;

aj 2 C‘g and BackBridgeProbðk; ‘Þ ¼
P
fbibjjai

2 Ck; aj 2 C‘g.
c. c o m p u t e Lðk; ‘Þ ¼ ForeBridgeProbðk; ‘Þ=

BackBridgeProbðk; ‘Þ.
2. Find the pair of sets ðCk; C‘Þ yielding the maximal

Lðk; ‘Þ.
3. Merge Ck and C‘ into a new set, obtaining a new

partition.

The rationale behind this simple procedure is that those
two sets of amino acids are merged together which produce
the maximal increment in the likelihood. An alternative
method, when the likelihood of the whole resulting set is
maximized, yields biased results, as sets with a high
likelihood tend to “absorb” other sets.

Resulting alphabet. An alphabet, called Transitive-

ab-initio, obtained with this greedy neighbor-joining
approach is given in Fig. 4. It will be used in experiments
presented later in Section 5.

4.3 Nonhierarchical Alphabets

Previous approaches (Sections 4.1 and 4.2) were based on
requirement (2), specifying that letters of the seed alphabet
should be embedded one into another to form a “nested”

ROYTBERG ET AL.: ON SUBSET SEEDS FOR PROTEIN ALIGNMENT 487

hierarchy. This requirement is biologically motivated and, on
the other hand, computationally useful as it reduces
considerably the space of possible letters. However, this
requirement is not necessary to implement the direct
indexing (see Section 1). Therefore, we also designed
nonhierarchical alphabets in order to compare them to
hierarchical ones.

To design nonhierarchical alphabets, we used a heuristic
that generalizes the one of Section 4.2. The heuristic consists
of two stages: first, generate a big number (several
thousands) of “reasonable” candidate letters, and then
select from them an alphabet containing �20 transitive
letters (not necessarily forming a hierarchy).

The algorithm of the first stage exploits the standard
paradigm of genetic algorithms: it consequently creates
“generations” of transitive letters. The initial population
consists of a single “identity” seed letter. At the kth iteration
(k ¼ 1; . . . ; 19), each letter generates p descendants, each
having ð20� kÞ sets.

To generate descendants of a letter from the kth
generation, we use the algorithm given in Section 4.2 but
maintain p (instead of just one) best partitions according to
the likelihood of the “bridge.” The ðkþ 1Þth generation is
selected among all descendants of the kth generation by
selecting those q letters � which have the highest likelihood
ratio fð�Þ=bð�Þ. With p ¼ 100 and q ¼ 500, the procedure
gives about 8,000 candidate letters.

To select a small number of these letters to form an
alphabet, we tried different heuristics based on the
following two ideas: 1) letters with high likelihood ratio

are preferred and 2) alphabet letters should have a range
of different weights. The second option produced a
better alphabet.

Resulting alphabet. We selected 20 letters out of
about 8,000 candidates by partitioning the candidates into
20 groups according to their weight ranging from 0 to 1
with increment 0.05, and by picking in each group the
letter with maximal likelihood. An alphabet obtained
with the above heuristic, called Nontree-transitive,
is shown in Fig. 5. This alphabet will be used in the
experiments reported in Section 5.

5 EXPERIMENTS

This section describes the experiments we conducted to
test the efficiency of seeds we designed with different
methods of previous sections. Sections 5.1-5.3 describe the
experimental protocol, from the assignment of back-
ground and foreground probabilities to the seed design.
In Section 5.4, we analyze the power of different seed
models proposed in Sections 3 and 4 with respect to
probabilistic models. Then in Section 5.5, we benchmark
the performance of seeds built over different alphabets
from Section 4 against BLASTP on several reference
protein databases. For Sections 5.4 and 5.5, all relative
experimental data, including scripts, designed alphabets,
seeds and seed families, and resulting sensitivity and
selectivity measures, have been collected in a supplemen-
tary Web page available at http://bioinfo.lifl.fr/yass/
iedera_proteins/.

488 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Fig. 3. Alphabet Transitive-predefined designed using the tree of Fig. 2. Each line corresponds to a seed letter (amino acid partition).

5.1 Probability Assignment and
Alphabet Generation

First of all, we derived probabilistic models in accordance
with the BLOSUM62 data from the original paper [26].
We obtained the BLOCKS database (version 5) [27] and the
software of [26] to infer Bernoulli probabilities for the
background and foreground alignment models. These
probabilities have been used throughout the whole pipeline
of experiments.

Different seed alphabets have then been generated by
the methods presented in Sections 3 (alphabet Nontran-
sitive), 4.1 (alphabet Transitive-predefined), 4.2
(alphabet Transitive-ab-initio), and 4.3 (alphabet
Nontree-transitive).

5.2 Seed Design

To each alphabet, we applied a seed design procedure that
we briefly describe now. Since each seed (or seed family) is
characterized by two parameters, sensitivity and selectivity,
it can be associated with a point on a two-dimensional plot.
Best seeds are then defined to be those which belong to the
Pareto set among all seeds, i.e., those that cannot be strictly
improved by increasing sensitivity, selectivity, or both.

For different selectivity levels, we designed good seed
families containing one to six individual seeds, among which
the best family was selected. In each seed family, individual
seeds have been chosen to have approximately the same
weight, within 5 percent tolerance. This requirement is
natural as in the case of divergent weights, seeds with lower
weight would dominantly affect the performance. In

practice, having individual seeds of similar weight allows
an efficient parallel implementation (see, e.g., [17]).

Estimation of sensitivity of individual seeds or seed
families has been done with the algorithm described in [1]
and implemented in the IEDERA software available at
http://bioinfo.lifl.fr/yass/iedera.php. The selectivity of an
individual seed has been computed according to the
definition (Section 2). For a seed family, its selectivity has
been estimated from below by summing the background
probabilities of individual seeds.

Seed family design has been done using a hill climbing
heuristic (see [28], [29]), alternating seed generation, and
seed estimation steps. All experiments were conducted for
alignment lengths 16 and 32.

5.3 BLASTP and the Vector Seed Family from [4]

Our goal is to compare between different seed design
approaches proposed in this paper, and also to benchmark
them against other reference seeding methods. We used
two references: the BLASTP seeding method and the family
of vector seeds proposed in [4]. Both of them use a score (or
weight) resulting from the cumulative contribution of
several neighboring positions to define a hit (see Section 1).
Therefore, they use a more powerful (and also more costly
to implement) formalism of seeding.

To estimate the sensitivity and selectivity of these seeds,
we modified our methods described in the previous section
by representing an alignment by a sequence of possible
individual scores. Foreground and background probability
of each score is easily computed from those for amino acid

ROYTBERG ET AL.: ON SUBSET SEEDS FOR PROTEIN ALIGNMENT 489

Fig. 4. Alphabet Transitive-ab-initio obtained with the method of Section 4.2.

pairs. After that, sensitivity and selectivity is computed

similarly to the previous case.

5.4 Results on Theoretical Models

We compare the performance of the different approaches by

plotting ROC curves of Pareto-optimal sets of seeds on the

selectivity/sensitivity graph. The two plots in Fig. 6 show the

results for alignment lengths 16 and 32, respectively. Red and

green polylines show the performance of BLASTP with word

size 3 and the vector seed family from [4] for different score

thresholds. The other curves show the performances of

different seed alphabets from Sections 3 and 4 represented by

the Pareto-optimal seeds (seed families) that we were able to

construct over those alphabets. As mentioned earlier in

Section 5.2, each time we selected the best seed family among

those with different number of individual seeds. Typically

(but not exclusively), points on the plots correspond to seed

families with four to six seeds. Typically, the seed span ranges

between three and five (respectively, three and six) for

alignment length 16 (respectively, 32). Seeds with larger span

(more than four) tend to occur in seed families with larger

number of seeds (more than three).
We observe that seeds over the alphabet of Section 3

(dark blue curve) are comparable in performance with the

vector seed family from [4] and clearly outperform seeds

over other alphabets. This result is interesting in itself,

although in many cases, this alphabet is not practical due to
its incompatibility with the transitivity condition.

As for the other alphabets, they roughly show a
comparable performance among them. For the alignment
length 16, our seeds perform comparably to BLASTP, with a
slightly better performance for high thresholds and a
slightly worse performance for low thresholds. On the
other hand, for alignments of length 32, our seeds clearly
outperform BLASTP. Note that the nonhierarchical alphabet
from Section 4.3 does not bring much of improvement,
which might indicate that lifting condition (3) does not
bring much of additional power. This point, however,
requires further investigation.

5.5 Results on Real Data

We made large-scale tests of our seeds on real data by
applying them to several main databases of protein
alignments. These databases are BALIBASE (version 3)
[30], HOMSTRAD [31], IRMBASE (version 1) [32],
OXBENCH (version 1.3) [33], PFAM (release 22) [34],
PREFAB (version 4) [35], and SMART (version 4) [36].

First, since all above databases except for OXBENCH

contain multiple alignments, we extracted from each of them
a data set of pairwise alignments. For this, pairs of aligned
sequences have been randomly extracted from multiple
alignments and matching gaps removed. To avoid a bias
induced by big (in terms of the number of sequences)

490 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Fig. 5. Nonhierarchical alphabet Nontree-transitive designed with the algorithm of Section 4.3.

multiple alignments, we selected a smaller fraction of
pairwise alignments from big multiple alignments than from
small ones: the number of selected alignments varied from
order of n2 for small alignments to

ffiffiffi
n
p

for big ones. The total
number of alignment processed in our experiments varied
from 640 (IRMBASE) to more than 250,000 (PFAM).

For all these data sets, we identified alignments detected
by the BLASTP seed for different score thresholds (word
length 3, BLOSUM62 matrix, score threshold 10-13). On the
other hand, for each BLASTP score threshold, we identified

the closest seed family in the Pareto set (cf., Section 5.2) with

equivalent or greater selectivity. This has been done for

each of the three transitive alphabets proposed in Section 4.

Selected seeds can be found at the supplementary material

Web page http://bioinfo.lifl.fr/yass/iedera_proteins/.
Results are shown in Fig. 7. Both methods detect a very

high fraction of alignments of IRMBASE (all of them for
thresholds 10 and 11). The poorest sensitivity is observed on
SMART where alignments represent small sequences of
protein domains of the same family. A relatively weak

ROYTBERG ET AL.: ON SUBSET SEEDS FOR PROTEIN ALIGNMENT 491

Fig. 6. ROC curves of seed performance measured on probabilistic models for alignment lengths (a) 16 and (b) 32. Blue, cyan, dark green, and dark
blue curves represent Pareto-optimal seed families constructed, respectively, over alphabets Transitive-predefined, Transitive-ab-
initio, Nontree-transitive, and Nontransitive. Each point of these curves corresponds to a seed family, typically three to five seeds
(respectively, three to six seeds) for alignment length 16 (respectively, 32). Red and green polylines show the performance of BLASTP with word size
3 and the vector seed family from [4] for different score thresholds.

sensitivity on PREFAB is due to its method of obtaining
alignments which is based on structural information and, at
the first step, “does not incorporate sequence similarity.”
Finally, HOMSTRAD combines both structural information
(using FUGUE [37]) and sequence information (using PSI-
BLAST [3]) which explains a better performance of seed-
based search in this case.

Comparing the performance of subset seeds versus
BLASTP, the former show clearly a better performance on
BALIBASE, PREFAB, and PFAM. On OXBENCH, HOM-
STRAD, and SMART, the obtained sensitivity is very close to
that of BLASTP. Globally, subset seeds show a better
performance for higher selectivity levels (greater thresholds).

6 CONCLUSION

In this paper, we studied the design of subset seeds for protein

alignments, which is a very attractive seeding principle that

does not use scores at the hitting stage of the alignment
procedure. The design of efficient subset seeds subsumes a

design of appropriate seed alphabets, i.e., sets of seed letters that

seeds can be built from. In this paper, we studied several

approaches to designing alphabets. In Section 3, we

considered the most general case when seed letters are only
required to induce a symmetric binary relation on amino

acids. In Section 4, we focused on transitive seed alphabets,

where seed letters are required to induce an equivalence

492 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

Fig. 7. Sensitivity of subset seeds versus BLASTP measured on benchmark alignment databases.

relation. In Section 4.1, we proposed an alphabet construc-
tion based on predefined hierarchical clusterings of amino
acids, while in Section 4.2, we considered a construction
based on an ad hoc clustering of amino acids based on the
likelihood ratio measure. Finally, in Section 4.3, we lifted the
requirement of hierarchical clustering and considered
alphabets with possibly “incompatible” letters (in the sense
of embedding of equivalence classes).

The main conclusion of our work is that although the

subset seed model is less expressive than the method of

cumulative score used in BLASTP, carefully designed subset

seeds can reach the same or even a higher performance. To

put it informally, the use of the cumulative score in defining

a hit can, without loss of performance, be replaced by a

careful distinction between different amino acid matches

without using any scoring system. From a practical point of

view, subset seeds can provide a more efficient implemen-

tation, especially for large-scale protein comparisons, due to

a much smaller number of accesses to the hash table. In

particular, this can be very useful for parallel implementa-

tions or specialized hardware (see, e.g., [17], [18]).

Interestingly, the BLAST team reported recently in [38]

that they used a reduced amino acid alphabet in order to

allow for longer seeds while still keeping the hash table of

acceptable size. (Note also that this idea has recently been

independently applied in [39] in a slightly different context.)

This is done, however, by translating one of the sequences

into a compressed alphabet and still using neighborhoods

and a cumulative hit criterion. In this work, we demon-

strated that instead of this, one can apply carefully designed

subset seeds to avoid using neighborhoods and scoring

systems at the seeding stage, without sacrificing the

performance.
Note that the seed design heuristic sketched in Section 5.2

does not guarantee to compute optimal seeds, and there-
fore, our seeds could potentially be further improved by a
more advanced design procedure, possibly bringing a
further increase in performance. This is especially true for
seeds of large weight (due to a bigger number of those), for
which our seed design procedure could produce nonopti-
mal seeds, thus explaining some “drop-offs” in high-
selectivity parts of plots of Fig. 6.

As far as further research is concerned, the question of
efficient seed design remains an open issue. Improvements
of the hill climbing heuristic used in this work are likely to
be possible.

Finally, it would be very interesting to further study the
relationship between optimal seeds and seed letters con-
tained in these seeds. In particular, it often appeared in our
experiments that optimal seeds contained “nonoptimal”
seed letters. Understanding this phenomenon is an inter-
esting theoretical question for further study.

ACKNOWLEDGMENTS

Parts of this work have been done during visits to LIFL of
Ewa Szczurek (June-August 2006), Anna Gambin and
Slawomir Lasota (August 2006), and Mikhail Roytberg
(October-December 2006). These visits were supported by
the ECO-NET and Polonium programs of the French

Ministry of Foreign Affairs. Laurent Noé was supported

by the ANR project CoCoGen (BLAN07-1_185484). Mikhail

Roytberg and Eugenia Furletova were supported by grants

RFBR 06-04-49249 and 08-01-92496, and INTAS 05-

10000008-8028. The authors thank Ivan Tsitovich for fruitful

discussions of statistical questions related to this work, and

Mathieu Giraud and Marta Girdea for commenting on the

manuscript. A preliminary version of this paper appeared

in the Proceedings of the ALBIO ’08 Workshop, Vienna,

Austria, 7-9 July 2008.

REFERENCES

[1] G. Kucherov, L. Noé, and M. Roytberg, “A Unifying Framework
for Seed Sensitivity and Its Application to Subset Seeds,”
J. Bioinformatics and Computational Biology, vol. 4, no. 2, pp. 553-
570, Apr. 2006 (preliminary version in WABI ’05).

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
pp. 403-410, 1990.

[3] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, no. 17, pp. 3389-3402, 1997.

[4] D. Brown, “Optimizing Multiple Seed for Protein Homology
Search,” IEEE/ACM Trans. Computational Biology and Bioinfor-
matics, vol. 2, no. 1, pp. 29-38, Jan. 2005 (early version appeared in
WABI ’04).

[5] B. Ma, J. Tromp, and M. Li, “PatternHunter: Faster and More
Sensitive Homology Search,” Bioinformatics, vol. 18, no. 3, pp. 440-
445, 2002.

[6] W.J. Kent, “BLAT—The BLAST-Like Alignment Tool,” Genome
Research, vol. 12, pp. 656-664, 2002.

[7] M. Li, B. Ma, D. Kisman, and J. Tromp, “PatternHunter II: Highly
Sensitive and Fast Homology Search,” J. Bioinformatics and
Computational Biology, vol. 2, no. 3, pp. 417-439, 2004 (earlier
version in GIW ’03).

[8] L. Noé and G. Kucherov, “YASS: Enhancing the Sensitivity of
DNA Similarity Search,” Nucleic Acid Research, vol. 33, pp. W540-
W543, 2005.

[9] D. Mak, Y. Gelfand, and G. Benson, “Indel Seeds for Homology
Search,” Bioinformatics, vol. 22, no. 14, pp. e341-e349, 2006.

[10] M. Csürös and B. Ma, “Rapid Homology Search with Neighbor
Seeds,” Algorithmica, vol. 48, no. 2, pp. 187-202, June 2007.

[11] B. Brejova, D. Brown, and T. Vinar, “Vector Seeds: An Extension to
Spaced Seeds,” J. Computer and System Sciences, vol. 70, no. 3,
pp. 364-380, 2005.

[12] Y. Sun and J. Buhler, “Designing Multiple Simultaneous Seeds for
DNA Similarity Search,” Proc. Eighth Ann. Int’l Conf. Computational
Molecular Biology (RECOMB ’04), Mar. 2004.

[13] G. Kucherov, L. Noé, and M. Roytberg, “Multi-Seed Lossless
Filtration,” Proc. 15th Ann. Combinatorial Pattern Matching Symp.
(CPM ’04), pp. 297-310, July 2004.

[14] I.-H. Yang, S.-H. Wang, Y.-H. Chen, P.-H. Huang, L. Ye, X. Huang,
and K.-M. Chao, “Efficient Methods for Generating Optimal
Single and Multiple Spaced Seeds,” Proc. IEEE Fourth Symp.
Bioinformatics and Bioeng. (BIBE ’04), pp. 411-416, 2004.

[15] J. Xu, D. Brown, M. Li, and B. Ma, “Optimizing Multiple Spaced
Seeds for Homology Search,” Proc. 15th Symp. Combinatorial
Pattern Matching, pp. 47-58, July 2004.

[16] D. Kisman, M. Li, B. Ma, and L. Wang, “tPatternHunter: Gapped,
Fast and Sensitive Translated Homology Search,” Bioinformatics,
vol. 21, no. 4, pp. 542-544, 2005.

[17] P. Peterlongo, L. Noé, D. Lavenier, G. Georges, J. Jacques, G.
Kucherov, and M. Giraud, “Protein Similarity Search with Subset
Seeds on a Dedicated Reconfigurable Hardware,” Proc. Second
Workshop Parallel Computational Biology, 2007.

[18] V.H. Nguyen and D. Lavenier, “Speeding Up Subset Seed
Algorithm for Intensive Protein Sequence Comparison,” Proc.
Sixth IEEE Int’l Conf. Research, Innovation & Vision for the Future
(RIVF ’08), pp. 57-63, 2008.

[19] L. Noé and G. Kucherov, “Improved Hit Criteria for DNA Local
Alignment,” BMC Bioinformatics, vol. 5, no. 149, Oct. 2004.

ROYTBERG ET AL.: ON SUBSET SEEDS FOR PROTEIN ALIGNMENT 493

[20] L. Zhou, J. Stanton, and L. Florea, “Universal Seeds for cDNA-to-
Genome Comparison,” BMC Bioinformatics, vol. 9, no. 36, 2008.

[21] B. Ma and H. Yao, “Seed Optimization is No Easier Than Optimal
Golomb Ruler Design,” Proc. Sixth Asia Pacific Bioinformatics Conf.
(APBC ’08), pp. 133-144, Jan. 2008.

[22] U. Keich, M. Li, B. Ma, and J. Tromp, “On Spaced Seeds for
Similarity Search,” Discrete Applied Math., vol. 138, no. 3, pp. 253-
263, 2004 (preliminary version in 2002).

[23] T. Li, K. Fan, J. Wang, and W. Wang, “Reduction of Protein
Sequence Complexity by Residue Grouping,” J. Protein Eng.,
vol. 16, pp. 323-330, 2003.

[24] L. Murphy, A. Wallqvist, and R. Levy, “Simplified Amino Acid
Alphabets for Protein Fold Recognition and Implications for
Folding,” J. Protein Eng., vol. 13, pp. 149-152, 2000.

[25] S. Cheng and Y.-F. Xu, “Constrained Independence System and
Triangulations of Planar Point Sets,” Proc. Computing and
Combinatorics, pp. 41-50, 1995.

[26] S. Henikoff and J. Henikoff, “Amino Acid Substitution Matrices
from Protein Blocks,” Proc. Nat’l Academy of Sciences USA, vol. 89,
pp. 10915-10919, 1992.

[27] S. Henikoff and J. Henikoff, “Automated Assembly of Protein
Blocks for Database Searching,” Nucleic Acids Research, vol. 19,
no. 23, pp. 6565-6572, 1991.

[28] J. Buhler, U. Keich, and Y. Sun, “Designing Seeds for Similarity
Search in Genomic DNA,” Proc. Seventh Ann. Int’l Conf. Computa-
tional Molecular Biology (RECOMB ’03), pp. 67-75, Apr. 2003.

[29] L. Ilie and S. Ilie, “Long Spaced Seeds for Finding Similarities
Between Biological Sequences,” Proc. Second Int’l Conf. Bioinfor-
matics & Computational Biology (BIOCOMP ’07), pp. 3-8, 2007.

[30] A. Bahr, J. Thompson, J. Thierry, and O. Poch, “BAliBASE
(Benchmark Alignment dataBASE): Enhancements for Repeats,
Transmembrane Sequences and Circular Permutations,” Nucleic
Acids Research, vol. 29, no. 1, pp. 323-326, 2001.

[31] A. Stebbings and K. Mizuguchi, “HOMSTRAD: Recent Develop-
ments of the Homologous Protein Structure Alignment Database,”
Nucleic Acids Research, vol. 32, pp. D203-D207, 2004.

[32] A.R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B.
Morgenstern, “DIALIGN-T: An Improved Algorithm for Seg-
ment-Based Multiple Sequence Alignment,” BMC Bioinformatics,
vol. 6, no. 66, 2005.

[33] G. Raghava, S. Searle, P. Audley, J. Barber, and G. Barton,
“OXBench: A Benchmark for Evaluation of Protein Multiple
Sequence Alignment Accuracy,” BMC Bioinformatics, vol. 4, no. 47,
2003.

[34] R. Finn, J. Mistry, B. Schuster-Bckler, S. Griffiths-Jones, V. Hollich,
T. Lassmann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, S.
Eddy, E. Sonnhammer, and A. Bateman, “PFAM: Clans, Web
Tools and Services,” Nucleic Acids Research, vol. 34, pp. D247-D251,
2006.

[35] R.C. Edgar, “MUSCLE: Multiple Sequence Alignment with High
Accuracy and High Throughput,” Nucleic Acids Research, vol. 32,
no. 5, pp. 1792-1797, 2004.

[36] I. Letunic, R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork,
“SMART 5: Domains in the Context of Genomes and Networks,”
Nucleic Acids Research, vol. 34, no. 1, pp. D257-D260, 2006.

[37] R. Nunez Miguel, J. Shi, and K. Mizuguchi, “Protein Fold
Recognition and Comparative Modeling using HOMSTRAD,
JOY and FUGUE,” Protein Structure Prediction: Bioinformatic
Approach, pp. 143-169, Int’l University Line Publishers, 2001.

[38] S. Shiryev, J. Papadopoulos, A. Schäffer, and R. Agarwala,
“Improved BLAST Searches Using Longer Words for Protein
Seeding,” Bioinformatics, vol. 23, no. 21, pp. 2949-2951, 2007.

[39] P. Peterlongo, L. Noé, D. Lavenier, N.V.H. , G. Kucherov, and M.
Giraud, “Optimal Neighborhood Indexing for Protein Similarity
Search,” BMC Bioinformatics, vol. 9, no. 534, 2008.

Mikhail Roytberg received the PhD degree in
computer science from Moscow State University
in 1983. He is the head of the Applied Math Lab
in the Institute of Mathematical Problems in
Biology at the Russian Academy of Sciences,
Pushchino, Russia. For the past few years, his
main research field has been the development of
algorithms for comparative analysis of biological
sequences.

Anna Gambin received the PhD degree in
computer science in 2000 and the habilitation
degree in 2008. She is an assistant professor at
the Institute of Informatics, Warsaw University,
Poland. For the last ten years, she has been
doing research on mathematical modeling and
algorithms for bioinformatics and computational
biology.

Laurent Noé received the PhD degree in
computer science from Henri Poincaré Univer-
sity of Nancy, France, in 2005, and is now a
lecturer at the University of Lille 1. He is
interested in comparative genomics and se-
quence analysis, and, more specifically, in
filtering methods devoted to those tasks.

Slawomir Lasota received the PhD degree in
computer science in 2000 and the habilitation
degree in 2008. He is an assistant professor in
the Institute of Informatics, Warsaw University,
Poland. Recently, he has been doing research
on concurrency theory as well as on algorithms
for bioinformatics and computational biology.

Eugenia Furletova received the master’s de-
gree from Puschino State University in 2008,
and is now working on her PhD thesis. She is a
juniour researcher at the Applied Mathematics
Lab in the Institute of Mathematical Problems in
Biology of the Russian Academy Sciences,
Pushchino, Russia.

Ewa Szczurek received the master’s degree in
computer science from the University of War-
saw, Poland, in 2006, and the University of
Uppsala, Sweden, in 2005. Currenty, she is a
PhD student at the International Max Planck
Research School for Computational Biology and
Scientific Computing.

Gregory Kucherov received the PhD degree in
computer science from the USSR Academy of
Sciences in 1988 and the habilitation degree
from Henri Poincaré University in Nancy in 2000.
He is a CNRS research director in the Labora-
tory for Computer Science (LIFL) in Lille,
France. He is currently on leave at the French-
Russian J.-V. Poncelet Lab in Moscow, Russia.
Since the beginning of the 1990s, he has been
doing research on word combinatorics, text

algorithms, and combinatorial algorithms for bioinformatics and compu-
tational biology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

494 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2009

