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Abstract. We study a method of seed-based lossless filtration for ap-
proximate string matching and related applications. The method is based
on a simultaneous use of several spaced seeds rather than a single seed as
studied by Burkhardt and Karkkainen [1]. We present algorithms to com-
pute several important parameters of seed families, study their combi-
natorial properties, and describe several techniques to construct efficient
families. We also report a large-scale application of the proposed tech-
nique to the problem of oligonucleotide selection for an EST sequence
database.

1 Introduction

Filtering is a widely-used technique in various string processing applications.
Applied to the approximate string matching problem [2], it can be summarized
by the following two-stage scheme: to find approximate occurrences (matches)
of a given string in a text, one first quickly discards (filters out) those text areas
where matches cannot occur, and then checks out the remaining parts of the
text for actual matches. The filtering is done according to small patterns of a
specified form that the searched string is assumed to share, in the exact way,
with its approximate occurrences. A similar filtration scheme is used by heuristic
local alignment algorithms ([3–6], to mention a few): they first identify potential
similarity regions that share some patterns and then actually check whether
those regions represent a significant similarity by computing a corresponding
alignment.

Two types of filtering should be distinguished – lossless and lossy. A lossless
filtration guarantees to detect all text fragments under interest, while a lossy
filtration may miss some of them, but still tries to detect the majority of them.
Local alignment algorithms usually use a lossy filtration. On the other hand, the
lossless filtration has been studied in the context of approximate string matching
problem [7, 1]. In this paper, we focus on the lossless filtration.

In the case of lossy filtration, its efficiency is measured by two parameters,
usually called selectivity and sensitivity. The sensitivity measures the part of
text fragments of interest that are missed by the filter (false negatives), and the
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selectivity indicates what part of detected fragments don’t actually represent a
solution (false positives). In the case of lossless filtration, only the selectivity
parameter makes sense and is therefore the main characteristic of the filtration
efficiency.

The choice of patterns that must be contained in the searched text frag-
ments is a key ingredient of the filtration algorithm. Gapped seeds (spaced seeds,
gapped q-grams) have been recently shown to significantly improve the filtration
efficiency over the “traditional” technique of contiguous seeds. In the framework
of lossy filtration for sequence alignment, the use of designed gapped seeds has
been introduced by the PatternHunter method [4] and then used by some
other algorithms (e.g. [5, 6]). In [8, 9], spaced seeds have been shown to improve
indexing schemes for similarity search in sequence databases. The estimation of
the sensitivity of spaced seeds (as well as of some extended seed models) has been
subject of several recent studies [10–14]. In the framework of lossless filtration
for approximate pattern matching, gapped seeds were studied in [1] (see also [7])
and have been also shown to increase the filtration efficiency considerably.

In this paper, we study an extension of the single-seed filtration technique [1].
The extension is based on using seed families rather than individual seeds. In
Section 3, we present dynamic programming algorithms to compute several im-
portant parameters of seed families. In Section 4, we first study several combina-
torial properties of families of seeds, and, in particular, seeds having a periodic
structure. These results are used to obtain a method for constructing efficient
seed families. We also outline a heuristic genetic programming algorithm for con-
structing seed families. Finally, in Section 5, we present several seed families we
computed, and we report a large-scale experimental application of the method
to the practical problem of oligonucleotide design.

2 Multiple Seed Filtering

A seed Q (called also spaced seed or gapped q-gram) is a list {p1, p2, . . . , pw} of
positive integers, called matching positions, such that p1 < p2 < . . . < pw. By
convention, we always assume p1 = 0. The span of a seed Q, denoted s(Q),
is the quantity pw + 1. The number w of positions is called the weight of the
seed and denoted w(Q). Often we will use a more visual representation of seeds,
adopted in [1], as words of length s(Q) over the two-letter alphabet {#,-}, where
# occurs at all matching positions and - at all positions in between. For exam-
ple, seed {0, 1, 2, 4, 6, 9, 10, 11} of weight 8 and span 12 is represented by word
###-#-#--###. The character - is called a joker. Note that, unless otherwise
stated, the seed has the character # at its first and last positions.

Intuitively, a seed specifies the set of patterns that, if shared by two se-
quences, indicate a possible similarity between them. Two sequences are similar
if the Hamming distance between them is smaller than a certain threshold. For
example, sequences CACTCGT and CACACTT are similar within Hamming distance
2 and this similarity is detected by the seed ##-# at position 2. We are inter-
ested in seeds that detect all similarities of a given length with a given Hamming
distance.
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Formally, a gapless similarity (hereafter simply similarity) of two sequences
of length m is a binary word w ∈ {0, 1}m interpreted as a sequence of matches
(1’s) and mismatches (0’s) of individual characters from the alphabet of input
sequences. A seed Q = {p1, p2, . . . , pw} matches a similarity w at position i,
1 ≤ i ≤ m − pw + 1, iff ∀j ∈ [1..w], w[i + pj] = 1. In this case, we also say that
seed Q has an occurrence in similarity w at position i. A seed Q is said to detect
a similarity w if Q has at least one occurrence in w.

Given a similarity length m and a number of mismatches k, consider all
similarities of length m containing k 0’s and (m − k) 1’s. These similarities
are called (m, k)-similarities. A seed Q solves the detection problem (m, k) (for
short, the (m, k)-problem) iff for all

(
m
k

)
(m, k)-similarities w, Q detects w. For

example, one can check that seed #-##--#-## solves the (15, 2)-problem.
Note that the weight of the seed is directly related to the selectivity of the

corresponding filtration procedure. A larger weight improves the selectivity, as
less similarities will pass through the filter. On the other hand, a smaller weight
reduces the filtration efficiency. Therefore, the goal is to solve an (m, k)-problem
by a seed with the largest possible weight.

Solving (m, k)-problems by a single seed has been studied by Burkhardt and
Kärkkäinen [1]. An extension we propose here is to use a family of seeds, instead
of a single seed, to solve the (m, k)-problem. Formally, a finite family of seeds
F =< Ql >L

l=1 solves the (m, k)-problem iff for all
(
m
k

)
(m, k)-similarities w,

there exists a seed Ql ∈ F that detects w.
Note that the seeds of the family are used in the complementary (or disjunc-

tive) fashion, i.e. a similarity is detected if it is detected by one of the seeds.
This differs from the conjunctive approach of [7] where a similarity should be
detected by two seeds simultaneously.

The following example motivates the use of multiple seeds. In [1], it has been
shown that a seed solving the (25, 2)-problem has the maximal weight 12. The
only such seed (up to reversal) is ###-#--###-#--###-#. However, the problem
can be solved by the family composed of the following two seeds of weight 14:
#####-##---#####-## and #-##---#####-##---####.

Clearly, using these two seeds increases the selectivity of the search, as only
similarities having 14 or more matching characters pass the filter vs 12 matching
characters in the case of single seed. On uniform Bernoulli sequences, this results
in the decrease of the number of candidate similarities by the factor of |A|2/2,
where A is the input alphabet. This illustrates the advantage of the multiple
seed approach: it allows to increase the selectivity while preserving a lossless
search. The price to pay for this gain in selectivity is a double work spent on
identifying the seed occurrences. In the case of large sequences, however, this is
largely compensated by the decrease in the number of false positives caused by
the increase of the seed weight.

3 Computing Properties of Seed Families

Burkhardt and Kärkkäinen [1] proposed a dynamic programming algorithm to
compute the optimal threshold of a given seed – the minimal number of its oc-
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currences over all possible (m, k)-similarities. In this section, we describe an
extension of this algorithm for seed families and, on the other hand, describe dy-
namic programming algorithms for computing two other important parameters
of seed families that we will use in a latter section.

Consider an (m, k)-problem and a family of seeds F =< Ql >L
l=1. We need

the following notation.

– smax = max{s(Ql)}L
l=1, smin = min{s(Ql)}L

l=1,
– for a binary word w and a seed Ql, suff(Ql, w)=1 if Ql matches w at position

(|w|−s(Ql)+1) (i.e. matches a suffix of w), otherwise suff(Ql, w)=0,
– last(w) = 1 if the last character of w is 1, otherwise last(w) = 0,
– zeros(w) is the number of 0’s in w.

3.1 Optimal Threshold

Given an (m, k)-problem, a family of seeds F =< Ql >L
l=1 has the optimal

threshold TF (m, k) if every (m, k)-similarity has at least TF (m, k) occurrences
of seeds of F and this is the maximal number with this property. Note that
overlapping occurrences of a seed as well as occurrences of different seeds at
the same position are counted separately. As an example, the singleton family
{###-##} has threshold 2 for the (15, 2)-problem.

Clearly, F solves an (m, k)-problem if and only if TF (m, k) > 0. If TF (m, k) >
1, then one can strengthen the detection criterion by requiring several seed occur-
rences for a similarity to be detected. This shows the importance of the optimal
threshold parameter.

We now describe a dynamic programming algorithm for computing the opti-
mal threshold TF (m, k). For a binary word w, consider the quantity TF (m, k, w)
defined as the minimal number of occurrences of seeds of F in all (m, k)-similari-
ties which have the suffix w. By definition, TF (m, k) = TF (m, k, ε). Assume that
we precomputed values TF (j, w) = TF (smax, j, w), for all j ≤ max{k, smax},
|w| = smax. The algorithm is based on the following recurrence relations on
TF (i, j, w), for i ≥ smax.

TF (i, j, w[1..n]) =






TF (j, w), if i=smax,
TF (i−1, j−1, w[1..n−1]), if w[n]=0,

TF (i − 1, j, w[1..n−1]) + [
∑L

l=1 suff(Ql, w)], if n=smax,
min{TF (i, j, 1.w), TF (i, j, 0.w}, if zeros(w)<j,
TF (i, j, 1.w), if zeros(w)=j.

The first relation is an initial condition of the recurrence. The second one is
based on the fact that if the last symbol of w is 0, then no seed can match a suffix
of w (as the last position of a seed is always a matching position). The third
relation reduces the size of the problem by counting the number of suffix seed
occurrences. The fourth one splits the counting into two cases, by considering
two possible characters occurring on the left of w. If w already contains j 0’s,
then only 1 can occur on the left of w, as stated by the last relation.
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A dynamic programming implementation of the above recurrence allows
to compute TF (m, k, ε) in a bottom-up fashion, starting from initial values
TF (j, w) and applying the above relations in the order in which they are writ-
ten. A straightforward dynamic programming implementation requires O(m · k ·
2(smax+1)) time and space. However, the space complexity can be immediately
improved: if values of i are processed successively, then only O(k · 2(smax+1))
space is needed. Furthermore, for each i and j, it is not necessary to consider
all 2(smax+1) different strings w, but only those which contain up to j 0’s. The
number of those w is g(j, smax) =

∑j
i=0

(
smax

i

)
. For each i, j ranges from 0

to k. Therefore, for each i, we need to store f(k, smax) =
∑k

j=0 g(j, smax) =
∑k

i=0

(
smax

i

)
· (k − i + 1) values. This yields the same space complexity as for

computing the optimal threshold for one seed [1].
The quantity

∑L
l=1 suff(Ql, w) can be precomputed for all considered words

w in time O(L · g(k, smax)) and space O(g(k, smax)), under the assumption that
checking an individual match is done in constant time. This leads to the overall
time complexity O(m · f(k, smax) + L · g(k, smax)) with the leading suff m ·
f(k, smax) (as L is usually small compared to m and g(k, smax) is smaller than
f(k, smax).

3.2 Number of Undetected Similarities

We now describe a dynamic programming algorithm that computes another
characteristic of a seed family, that will be used later in Section 4.4. Consider
an (m, k)-problem. Given a seed family F =< Ql >L

l=1, we are interested in the
number UF (m, k) of (m, k)-similarities that are not detected by F . For a binary
word w, define UF (m, k, w) to be the number of undetected (m, k)-similarities
that have the suffix w.

Similar to [10], let X(F ) be the set of binary words w such that (i) |w| ≤ smax,
(ii) for any Ql ∈ F , suff(Ql, 1smax−|w|w) = 0, and (iii) no proper suffix of w
verifies (ii). Note that word 0 belongs to X(F ), as the last position of every seed
is a matching position.

The following recurrence relations allow to compute UF (i, j, w) for i ≤ m,
j ≤ k, and |w| ≤ smax.

UF (i, j, w[1..n])=






(
i−|w|

j−zeros(w)

)
, if i<smin,

0, if ∃l∈ [1..L], suff(Ql, w)=1,
UF (i−1, j−last(w), w[1..n−1]), if w ∈ X(F ),
UF (i, j, 1.w) + U(i, j, 0.w), if zeros(w)<j,
UF (i, j, 1.w), if zeros(w)=j.

The first condition says that if i < smin, then no word of length i will be detected,
hence the binomial formula. The second condition is straightforward. The third
relation follows from the definition of X(F ) and allows to reduce the size of the
problem. The last two conditions are similar to those from the previous section.

The set X(F ) can be precomputed in time O(L · g(k, smax)) and the worst-
case time complexity of the whole algorithm remains O(m · f(k, smax) + L ·
g(k, smax)).
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3.3 Contribution of a Seed

Using a similar dynamic technique, one can compute, for a given seed of the
family, the number of (m, k)-similarities that are detected only by this seed and
not by the others. Together with the number of undetected similarities, this
parameter will be used later in Section 4.4.

Given an (m, k)-problem and a family F =< Ql >L
l=1, we define SF (m, k, l) to

be the number of (m, k)-similarities detected by the seed Ql exclusively (through
one or several occurrences), and SF (m, k, w, l) to be the number of those simi-
larities ending with the suffix w. A dynamic programming algorithm similar to
the one described in the previous sections can be applied to compute SF (m, k, l).
Below we give only the main recurrence relations for SF (m, k, w, l) and leave out
initial conditions.

SF (i, j, w[1..n], l) =






∑
x∈{0,1} SF (i−1, j−1+x, x.w[1..n−1], l) if suff(Ql, w) = 1 and

+ UF (i−1, j−1+x, x.w[1..n−1]), ∀l′�= l, suff(Ql′ , w)=0,∑
x∈{0,1} SF (i−1, j−1+x, x.w[1..n−1], l) if ∀l′, suff(Ql′ , w)=0.

The first relation allows to reduce the problem when Ql matches a suffix of w,
but not the other seeds of the family. The second one applies if no seed matches a
suffix of w. The complexity of computing SF (m, k, l) for a given l is the same as
the complexity of dynamic programming algorithms from the previous sections.

4 Seed Design

In the previous Section we showed how to compute various useful characteristics
of a given family of seeds. A much more difficult task is to find an efficient
seed family that solves a given (m, k)-problem. Note that there exists a trivial
solution where the family consists of all

(
m
k

)
position combinations, but this is

in general unacceptable in practice because of a huge number of seeds. Our goal
is to find families of reasonable size (typically, with the number of seeds smaller
than ten), with a good filtration efficiency.

In this section, we present several results that contribute to this goal. In
Section 4.1, we start with the case of single seed with a fixed number of jokers
and show, in particular, that for one joker, there exists one best seed in a sense
that will be defined. We then show in Section 4.2 that a solution for a larger
problem can be obtained from a smaller one by a regular expansion operation.
In Section 4.3, we focus on seeds that have a periodic structure and show how
those seeds can be constructed by iterating some smaller seeds. We then show a
way to build efficient families of periodic seeds. Finally, in Section 4.4, we briefly
describe a heuristic approach to constructing efficient seed families that we used
in the experimental part of this work presented in Section 5.

4.1 Single Seeds with a Fixed Number of Jokers

Assume that we fixed a class of seeds under interest (e.g. seeds of a given minimal
weight). One possible way to define the seed design problem is to fix the similarity
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length m and find a seed that solves the (m, k)-problem with the largest possible
value of k. A complementary definition is to fix k and minimize m provided that
the (m, k)-problem is still solved. In this section, we adopt the second definition
and present an optimal solution for one particular case.

For a seed Q and a number of mismatches k, define the k-critical value for
Q as the minimal value m such, that Q solves the (m, k)-problem. For a class of
seeds C and a value k, a seed is k-optimal in C if Q has the minimal k-critical
value among all seeds of C.

One interesting class of seeds C is obtained by putting an upper bound on
the possible number of jokers in the seed, i.e. on the number (s(Q) − w(Q)).
We have found a general solution of the seed design problem for the class C1(n)
consisting of seeds of weight n with only one joker.

Theorem 1. Let n be an integer and r = �n/3�. For every k ≥ 2, seed Q(n) =
#n−r-#r is k-optimal among the seeds of C1(n).

To illustrate Theorem 1, seed ####-## is optimal among all seeds of weight
6 with one joker. This means that this seed solves the (m, 2)-problem for all
m ≥ 16 and this is the smallest possible bound over all seeds of this class.
Similarly, this seed solves the (m, 3)-problem for all m ≥ 20, which is the best
possible bound, etc.

4.2 Regular Expansion and Contraction of Seeds

We now show that seeds solving larger problems can be obtained from seeds
solving smaller problems, and vice versa, using a regular expansion and regular
contraction operations.

Given a seed Q , its i-regular expansion i ⊗ Q is obtained by multiplying
each matching position by i. This is equivalent to inserting i− 1 jokers between
every two successive positions along the seed. For example, if Q = {0, 2, 3, 5}
(or #-##-#), then the 2-regular expansion of Q is 2 ⊗ Q = {0, 4, 6, 10} (or
#---#-#---#). Given a family F , its i-regular expansion i ⊗ F is the family
obtained by applying the i-regular expansion on each seed of F .

Lemma 1. If a family F solves the (m, k)-problem, then the (im, (i + 1)k − 1)-
problem is solved both by family F and by its i-regular expansion Fi = i ⊗ F .

Proof. Consider an (im, (i + 1)k − 1)-similarity w. By the pigeon hole principle,
it contains at least one substring of length m with k mismatches or less, and
therefore F solves the (im, (i + 1)k − 1)-problem. On the other hand, consider
i disjoint subsequences of w each one consisting of m positions equal modulo i.
Again, by the pigeon hole principle, at least one of them contains k mismatches
or less, and therefore the (im, (i + 1)k − 1)-problem is solved by i ⊗ F .

The following lemma is the inverse of Lemma 1, it states that if seeds solving
a bigger problem have a regular structure, then a solution for a smaller problem
can be obtained by the regular contraction operation, inverse to the regular
expansion.
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Lemma 2. If a family Fi = i⊗F solves the (im, k)-problem, then F solves both
the (im, k)-problem and the (m, �k/i�)-problem.

Proof. Similar to Lemma 1.

Example 1. To illustrate the two lemmas above, we give the following example
pointed out in [1]. The following two seeds are the only seeds of weight 12
that solve the (50, 5)-problem: #-#-#---#-----#-#-#---#-----#-#-#---# and
###-#--###-#--###-#. The first one is the 2-regular expansion of the second.
The second one is the only seed of weight 12 that solves the (25, 2)-problem.

The regular expansion allows, in some cases, to obtain an efficient solution
for a larger problem by reducing it to a smaller problem for which an optimal
or a near-optimal solution is known.

4.3 Periodic Seeds

In this section, we study seeds with a periodic structure that can be obtained
by iterating a smaller seed. Such seeds often turn out to be among maximally
weighted seeds solving a given (m, k)-problem. Interestingly, this contrasts with
the lossy framework where optimal seeds usually have a “random” irregular
structure.

Consider two seeds Q1,Q2 represented as words over {#,-}. We denote
[Q1,Q2]i the seed defined as (Q1Q2)iQ1. For example, [###-#, --]2 = ###-#--
###-#--###-#.

We also need a modification of the (m, k)-problem, where (m, k)-similarities
are considered modulo a cyclic permutation. We say that a seed family F solves
a cyclic (m, k)-problem, if for every (m, k)-similarity w, F detects one of cyclic
permutations of w. Trivially, if F solves an (m, k)-problem, it also solves the
cyclic (m, k)-problem. To distinguish from a cyclic problem, we call sometimes
an (m, k)-problem a linear problem.

We first restrict ourselves to the single-seed case. The following lemma demon-
strates that iterating smaller seeds solving a cyclic problem allows to obtain a
solution for bigger problems, for the same number of mismatches.

Lemma 3. If a seed Q solves a cyclic (m, k)-problem, then for every i ≥ 0, the
seed Qi = [Q,−(m−s(Q))]i solves the linear (m · (i + 1) + s(Q)− 1, k)-problem. If
i �= 0, the inverse holds too.

Example 2. Observe that the seed ###-# solves the cyclic (7, 2)-problem. From
Lemma 3, this implies that for every i ≥ 0, the (11 + 7i, 2)-problem is solved by
the seed [###-#, --]i of span 5+7i. Moreover, for i = 1, 2, 3, this seed is optimal
(maximally weighted) over all seeds solving the problem.

By a similar argument based on Lemma 3, the periodic seed [#####-##, ---]i

solves the (18+11i, 2)-problem. Note that its weight grows as 7
11m compared to

4
7m for the seed from the previous paragraph. However, this is not an asymp-
totically optimal bound, as we will see later.
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The (18 + 11i, 3)-problem is solved by the seed (###-#--#, ---)i, as seed
###-#--# solves the cyclic (11, 3)-problem. For i = 1, 2, the former is a maximally
weighted seed among all solving the (18 + 11i, 3)-problem.

One question raised by these examples is whether there exists a general peri-
odic seed which is asymptotically optimal, i.e. has a maximal asymptotic weight.
The following theorem establishes a tight asymptotic bound on the weight of an
optimal seed, for a fixed number of mismatches. It gives a negative answer to
this question, as it shows that the maximal weight grows faster than any linear
fraction of the problem size.

Theorem 2. Consider a fixed k. Let w(m) be the maximal weight of a seed
solving the cyclic (m, k)-problem. Then (m − w(m)) = Θ(m

k−1
k ).

The following simple lemma is also useful for constructing efficient seeds.

Lemma 4. Assume that a family F solves an (m, k)-problem. Let F ′ be the
family obtained from F by cutting out l characters from the left and r characters
from the right of each seed of F . Then F ′ solves the (m − r − l, k)-problem.

Example 3. The (9 + 7i, 2)-problem is solved by the seed [###, -#--]i which is
optimal for i = 1, 2, 3. Using Lemma 4, this seed can be immediately obtained
from the seed [###-#, --]i from Example 2, solving the (11 + 7i, 2)-problem.

We now apply the above results for the single seed case to the case of multiple
seeds.

For a seed Q considered as a word over {#,-}, we denote by Q[i] its cyclic
shift to the left by i characters. For example, if Q = ####-#-##--, then Q[5] =
#-##--####-. The following lemma gives a way to construct seed families solving
bigger problems from an individual seed solving a smaller cyclic problem.

Lemma 5. Assume that a seed Q solves a cyclic (m, k) problem and assume that
s(Q) = m (otherwise we pad Q on the right with (m − s(Q)) jokers). Fix some
i > 1. For some L > 0, consider a list of L integers 0 ≤ j1 < · · · < jL < m, and
define a family of seeds F =< ‖(Q[jl])

i‖ >L
l=1, where ‖(Q[jl])

i‖ stands for the
seed obtained from (Q[jl])

i by deleting the joker characters at the left and right
edges. Define δ(l) = ((jl−1 − jl) mod m) (or, alternatively, δ(l) = ((jl − jl−1)
mod m)) for all l, 1 ≤ l ≤ L. Let m′ = max{s(‖(Q[jl])

i‖) + δ(l)}L
l=1 − 1. Then

F solves the (m′, k)-problem.

We illustrate Lemma 5 with two examples that follow.

Example 4. Let m = 11, k = 2. Consider the seed Q = ####-#-##-- solving
the cyclic (11, 2)-problem. Choose i = 2, L = 2, j1 = 0, j2 = 5. This gives
two seeds Q1 = ‖(Q[0])2‖ = ####-#-##--####-#-## and Q2 = ‖(Q[5])2‖ =
#-##--####-#-##--#### of span 20 and 21 respectively, δ(1) = 6 and δ(2) = 5.
max{20+6, 21+5}− 1 = 25. Therefore, family F = {Q1, Q2} solves the (25, 2)-
problem.
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Example 5. Let m = 11, k = 3. The seed Q = ###-#--#--- solving the cyclic
(11, 3)-problem. Choose i = 2, L = 2, j1 = 0, j2 = 4. The two seeds are
Q1 = ‖(Q[0])2‖ = ###-#--#---###-#--# (span 19) and Q2 = ‖(Q[4])2‖ =
#--#---###-#--#---### (span 21), with δ(1) = 7 and δ(2) = 4. max{19 +
7, 21 + 4} − 1 = 25. Therefore, family F = {Q1, Q2} solves the (25, 3)-problem.

4.4 Heuristic Seed Design

Results of Sections 4.1-4.3 allow to construct efficient seed families in certain
cases, but still do not allow to perform a systematic seed design. In this section,
we briefly outline a heuristic genetic programming algorithm for designing seed
families. The algorithm was used in the experimental part of this work, that we
present in the next section. Note that this algorithm uses dynamic programming
algorithms of Section 3.

The algorithm tries to iteratively improve the characteristics of a population
of seed families. A sample of family candidates are processed, then some of them
are mutated and crossed over according to the set of (m, k)-similarities they do
not detect.

The first step of each iteration is based on screening current families against
sets of difficult similarities, which are similarities that have been detected by
fewer families. These sets are permanently reordered and updated according to
the number of families that don’t detect those similarities.

For those families that pass through the screening filter, the number of un-
detected similarities is computed by the dynamic programming algorithm of
Section 3.2. The family is kept if it produces a smaller number than the families
currently known. To detect seeds to be improved inside a family, we compute the
contribution of each seed by the dynamic programming algorithm of Section 3.3.
The seeds with the least contribution are then modified.

The entire heuristic procedure does not guarantee finding optimal seeds fam-
ilies but often allows to compute efficient or even optimal solutions in a reason-
able time. For example, in ten runs of the algorithm we found 3 of the 6 possible
families of two seeds of weight 14 solving the (25, 2)-problem. The whole com-
putation took less than 1 hour, compared to a week of computation needed to
exhaustively test all seed pairs.

5 Experiments

We describe two groups of experiments we have made. The first one concerns the
design of efficient seed families, and the second one applies a multi-seed lossless
filtration to the identification of unique oligos in a large set of EST sequences.

Seed Design Experiments

We considered several (m, k)-problems. For each problem, and for a fixed number
of seeds in the family, we computed families solving the problem and realizing



Multi-seed Lossless Filtration 307

as large seed weight as possible (under a natural assumption that all seeds in a
family have the same weight). We also kept track of the ways (periodic seeds,
genetic programming heuristics, exhaustive search) in which those families can
be computed.

Tables 1 and 2 summarize some results obtained for the (25, 2)-problem and
the (25, 3)-problem respectively. Families of periodic seeds (that can be found
using Lemma 5) are marked with p, those that are found using a genetic algo-
rithm are marked with g, and those which are obtained by an exhaustive search
are marked with e. Only in this latter case, the families are guaranteed to be
optimal. Families of periodic seeds are shifted according to their construction
(see Lemma 5).

Moreover, to compare the selectivity of different families solving a given
(m, k)-problem, we estimated the probability δ for at least one of the seeds
of the family to match at a given position of a uniform Bernoulli four-letter
sequence.

Note that the simple fact of passing from a single seed to a two-seed family
results in a considerable gain in efficiency: in both examples shown in the tables
there a change of about one order magnitude in the selectivity estimator δ.

Table 1. Seed families for (25, 2)-problem

size weight family seeds δ

1 12e,p,g ###-#--###-#--###-# 5.96 · 10−8

2 14e,p,g ####-#-##--####-#-## 7.47 · 10−9

#-##--####-#-##--####

3 15p #--##-#-######--##-#-## 2.80 · 10−9

#-######--##-#-#####
####--##-#-######--##

4 16p ###-##-#-###--####### 9.42 · 10−10

##-#-###--#######-##-#
###--#######-##-#-###

#######-##-#-###--###

6 17p ##-#-##--#######-####-# 3.51 · 10−10

#-##--#######-####-#-##
#######-####-#-##--###

###-####-#-##--#######
####-#-##--#######-###

##--#######-####-#-##--#

Oligo Design Using Multi-seed Filtering

An important practical application of lossless filtration is the design of reliable
oligonucleotides for DNA micro-array experiments. Oligonucleotides (oligos) are
small DNA sequences of fixed size (usually ranging from 10 to 50) designed to
hybridize only with a specific region of the genome sequence. In micro-array
experiments, oligos are expected to match ESTs that stem from a given gene
and not to match those of other genes. The problem of oligo design can then
be formulated as the search for strings of a fixed length that occur in a given
sequence but do not occur, within a specified distance, in other sequences of a
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Table 2. Seed families for (25, 3)-problem

size weight family seeds δ

1 8 e,p,g ###-#-----###-# 1.53 · 10−5

2 10p ####-#-##--#---## 1.91 · 10−6

##--#---####-#-##

3 11p #---####-#-##--#---## 7.16 · 10−7

###-#-##--#---####
##--#---####-#-##--#

4 12p #---####-#-##--#---### 2.39 · 10−7

###-#-##--#---####-#
#-##--#---####-#-##--#

##--#---####-#-##--#---#

given (possibly very large) sample. Different approaches to oligo design apply
different distance measures and different algorithmic techniques [15–18]. The
experiments we briefly present here demonstrate that the multi-seed filtering
provides an efficient solution to the oligo design problem.

family size weight δ

1 7e 6.10 · 10−5

2 8e 3.05 · 10−5

3 9e 1.14 · 10−5

4 10g 3.81 · 10−6

6 11g 1.43 · 10−6

10 12g 5.97 · 10−7

{ ####---#---------#---#--#### ,
###--#--##--------#-#### ,
####----#--#--##-### ,
###-#-#---##--#### ,
###-##-##--#-#-## ,
####-##-#-#### }

Fig. 1. Computed seed families for the considered (32, 5)-problem and the chosen fam-
ily (6 seeds of weight 11)

We adopt the formalization of the oligo design problem as the problem of
identifying in a given sequence (or a sequence database) all substrings of length
m that have no occurrences elsewhere in the sequence within the Hamming
distance k. The parameters m and k were set to 32 and 5 respectively. For
the (32, 5)-problem, different seed families were designed and their selectivity
was estimated. Those are summarized in the table in Figure 1, using the same
conventions as in Tables 1 and 2 above. The family composed of 6 seeds of weight
11 was selected for the filtration experiment (shown in Figure 1).

The filtering has been applied to a database of rice EST sequences composed
of 100015 sequences for a total length of 42.845.242 Mb1. Substrings matching
other substrings with 5 substitution errors or less were computed. The compu-
tation took slightly more than one hour on a Pentium 4 3GHz computer. Before
applying the filtering using the family for the (32, 5)-problem, we made a rough
pre-filtering using one spaced seed of weight 16 to detect, with a high selectivity,
almost identical regions. As a result of the whole computation, 87% percent of
the database were removed by the filtering procedure, leaving the remaining part
as oligo candidates.
1 source : http://bioserver.myongji.ac.kr/ricemac.html, The Korea Rice Genome

Database
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6 Conclusion

In this paper, we studied a lossless filtration method based on multi-seed families
and demonstrated that it represents an improvement compared to the single-
seed approach considered in [1]. We showed how some important characteristics
of seed families can be computed using the dynamic programming. We pre-
sented several combinatorial results that allow one to construct efficient families
composed of seeds with a periodic structure. Finally, we described experimen-
tal results providing evidence of the applicability and efficiency of the whole
method.

The results of Sections 4.1-4.3 establish several combinatorial properties of
seed families, but many more of them remain to be elucidated. We conjecture
that the structure of optimal or near-optimal seed families can be studied using
the combinatorial design theory, but this relation remains to be clearly estab-
lished. Another direction is to consider different distance measures, especially
the Levenstein distance, or at least to allow some restricted insertion/deletion
errors. The method proposed in [19] does not seem to be easily generalized to
multi-seed families, and a further work is required to improve lossless filtering
in this case.

After this work was completed, it has been brought to our attention that in
the context of lossy filtering for local alignement algorithms, the use of optimized
multi-seed families has been recently proposed in PatternHunter II software
[20], and the design of those families has been also studied in paper [21].
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