
June 21, 2006 12:9 WSPC/185-JBCB 00197

Journal of Bioinformatics and Computational Biology
Vol. 4, No. 2 (2006) 553–569
c© Imperial College Press

A UNIFYING FRAMEWORK FOR SEED SENSITIVITY
AND ITS APPLICATION TO SUBSET SEEDS∗

GREGORY KUCHEROV

LIFL/CNRS, Bât. M3, 59655 Villeneuve d’Ascq, France
Gregory.Kucherov@lif l.fr

LAURENT NOÉ

LIFL/USTL, Bât. M3, 59655 Villeneuve d’Ascq, France
Laurent.Noe@lif l.fr

MIKHAIL ROYTBERG†

IMPB,142290, Pushchino, Moscow Region, Russia
mroytberg@impb.psn.ru

Received 11 October 2005
Accepted 2 November 2005

We propose a general approach to compute the seed sensitivity, that can be applied to
different definitions of seeds. It treats separately three components of the seed sensitivity
problem — a set of target alignments, an associated probability distribution, and a seed
model — that are specified by distinct finite automata. The approach is then applied to
a new concept of subset seeds for which we propose an efficient automaton construction.
Experimental results confirm that sensitive subset seeds can be efficiently designed using
our approach, and can then be used in similarity search producing better results than
ordinary spaced seeds.

Keywords: Similarity search; sequence alignment; spaced seed; sensitivity; finite automa-
ton; subset seed.

1. Introduction

In the framework of pattern matching and similarity search in biological sequences,
seeds specify a class of short sequence motifs which, if shared by two sequences,
are assumed to witness a potential similarity. Spaced seeds have been introduced
several years ago8,18 and have been shown to improve significantly the efficiency
of the search. One of the key problems associated with spaced seeds is a precise

∗A summary of this work has been presented to the 2nd Moscow Conference on Computational
Molecular Biology (July 2005) and to the 5th Workshop on Algorithms in Bioinformatics (Palma
de Mallorca, October 2005)
†Part of this work has been done during a visit to LORIA in summer 2004

553

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

554 G. Kucherov, L. Noé & M. Roytberg

estimation of the sensitivity of the associated search method. This is important for
comparing seeds and for choosing most appropriate seeds for a sequence comparison
problem to solve.

The problem of seed sensitivity depends on several components. First, it depends
on the seed model specifying the class of allowed seeds and the way that seeds match
(hit) potential alignments. In the basic case, seeds are specified by binary words of
certain length (span), possibly with a constraint on the number of 1’s (weight). How-
ever, different extensions of this basic seed model have been proposed in the litera-
ture, such as multi-seed (or multi-hit) strategies,2,14,18 seed families,6,16,17,20,22,23

seeds over non-binary alphabets,9,19 vector seeds.4,6

The second parameter is the class of target alignments that are alignment frag-
ments that one aims to detect. Usually, these are gapless alignments of a given
length. Gapless alignments are easy to model, in the simplest case they are rep-
resented by binary sequences in the match/mismatch alphabet. This representa-
tion has been adopted by many authors.5,7,10,11,13,18 The binary representation,
however, cannot distinguish between different types of matches and mismatches,
and is clearly insufficient in the case of protein sequences. In Refs. 4, 6, an align-
ment is represented by a sequence of real numbers that are scores of matches or
mismatches at corresponding positions. A related, but yet different approach is
suggested in Ref. 19, where DNA alignments are represented by sequences on the
ternary alphabet of match/transition/transversion. Finally, another generalization
of simple binary sequences was considered in Ref. 15, where alignments are required
to be homogeneous, i.e. to contain no sub-alignment with a score larger than the
entire alignment.

The third necessary ingredient for seed sensitivity estimation is the probability
distribution on the set of target alignments. Again, in the simplest case, alignment
sequences are assumed to obey a Bernoulli model.11,18 In more general settings,
Markov or Hidden Markov models are considered.5,7 A different way of defining
probabilities on binary alignments has been taken in Ref. 15: all homogeneous
alignments of a given length and score are considered equiprobable.

Several algorithms for computing the seed sensitivity for different frameworks
have been proposed in the above-mentioned papers. All of them, however, use a
common dynamic programming (DP) approach, first brought up in Ref. 13.

In the present paper, we propose a general approach to computing the seed sensi-
tivity. This approach subsumes the cases considered in the above-mentioned papers,
and allows to deal with new combinations of the three seed sensitivity parameters.
The underlying idea of our approach is to specify each of the three components —
the seed, the set of target alignments, and the probability distribution — by a
separate finite automaton.

A deterministic finite automaton (DFA) that recognizes all alignments matched
by given seeds was already used in Ref. 7 for the case of ordinary spaced seeds. In
this paper, we assume that the set of target alignments is also specified by a DFA
and, more importantly, that the probabilistic model is specified by a probability

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 555

transducer — a probability-generating finite automaton equivalent to HMM with
respect to the class of generated probability distributions.

We show that once these three automata are set, the seed sensitivity can be
computed by a unique general algorithm. This algorithm reduces the problem to a
computation of the total weight over all paths in an acyclic graph corresponding to
the automaton resulting from the product of the three automata. This computation
can be done by a well-known dynamic programming algorithm12,21 with the time
complexity proportional to the number of transitions of the resulting automaton.
Interestingly, all above-mentioned seed sensitivity algorithms considered by different
authors can be reformulated as instances of this general algorithm.

In the second part of this work, we study a new concept of subset seeds — an
extension of spaced seeds that allows to deal with a non-binary alignment alphabet
and, on the other hand, still allows an efficient hashing method to locate seeds. For
this definition of seeds, we define a DFA with a number of states independent of the
size of the alignment alphabet. Reduced to the case of ordinary spaced seeds, this
DFA construction gives the same worst-case number of states as the Aho-Corasick
DFA used in Ref. 7. Moreover, our DFA has always no more states than the DFA
of Ref. 7, and has substantially less states on average.

Together with the general approach proposed in the first part, our DFA gives an
efficient algorithm for computing the sensitivity of subset seeds, for different classes
of target alignments and different probability transducers. In the experimental part
of this work, we confirm this by running an implementation of our algorithm in
order to design efficient subset seeds for different probabilistic models, trained on
real genomic data. We also show experimentally that designed subset seeds allow to
find more significant alignments than ordinary spaced seeds of equivalent selectivity.

2. General Framework

Estimating the seed sensitivity amounts to computing the probability for a random
word (target alignment), drawn according to a given probabilistic model, to belong
to a given language, namely the language of all alignments matched by a given seed
(or a set of seeds).

2.1. Target alignments

Target alignments are represented by words over an alignment alphabet A. In
the simplest case, considered most often, the alphabet is binary and expresses
a match or a mismatch occurring at each alignment column. However, it
could be useful to consider larger alphabets, such as the ternary alphabet of
match/transition/transversion for the case of DNA (see Ref. 19). The importance
of this extension is even more evident for the protein case,6 where different types
of amino acid pairs are generally distinguished.

Usually, the set of target alignments is a finite set. In the case considered most
often,5,7,10,11,13,18 target alignments are all words of a given length n. This set

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

556 G. Kucherov, L. Noé & M. Roytberg

is trivially a regular language that can be specified by a deterministic automaton
with (n + 1) states. However, more complex definitions of target alignments have
been considered (see e.g. Ref. 15) that aim to capture more adequately properties
of biologically relevant alignments. In general, we assume that the set of target
alignments is a finite regular language LT ∈ A∗ and thus can be represented by an
acyclic DFA T = 〈QT , q0

T , qF
T ,A, ψT 〉.

2.2. Probability assignment

Once an alignment language LT has been set, we have to define a probability
distribution on the words of LT . We do this using probability transducers.

A probability transducer is a finite automaton without final states in which each
transition outputs a probability.

Definition 2.1. A probability transducer G over an alphabet A is a 4-tuple
〈QG, q0

G,A, ρG〉, where QG is a finite set of states, q0
G ∈ QG is an initial state,

and ρG : QG × A × QG → [0, 1] is a real-valued probability function such that
∀q ∈ QG,

∑
q′∈QG,a∈A ρG(q, a, q′) = 1.

A transition of G is a triplet e = 〈q, a, q′〉 such that ρ(q, a, q′) > 0. Letter a is
called the label of e and denoted label (e). A probability transducer G is deter-
ministic if for each q ∈ QG and each a ∈ A, there is at most one transition
〈q, a, q′〉. For each path P = (e1, . . . , en) in G, we define its label to be the word
label (P) = label (e1) · · · label (en), and the associated probability to be the product
ρ(P) =

∏n
i=1 ρG(ei). A path is initial, if its start state is the initial state q0

G of the
transducer G.

Definition 2.2. The probability of a word w ∈ A∗ according to a probability
transducer G = 〈QG, q0

G,A, ρG〉, denoted PG(w), is the sum of probabilities of all
initial paths in G with the label w. PG(w) = 0 if no such path exists. The probability
PG(L) of a finite language L ⊆ A∗ according a probability transducer G is defined
by PG(L) =

∑
w∈L PG(w).

Note that for any n and for L = An (all words of length n), PG(L) = 1.
Probability transducers can express common probability distributions on

words (alignments). Bernoulli sequences with independent probabilities of each
symbol10,11,18 can be specified with deterministic one-state probability transduc-
ers. In Markov sequences of order k,7,20 the probability of each symbol depends on
k previous symbols. They can therefore be specified by a deterministic probability
transducer with at most |A|k states.

A Hidden Markov model (HMM)5 corresponds, in general, to a non-
deterministic probability transducer. The states of this transducer correspond to
the (hidden) states of the HMM, plus possibly an additional initial state. Inversely,
for each probability transducer, one can construct an HMM generating the same

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 557

probability distribution on words. Therefore, non-deterministic probability trans-
ducers and HMMs are equivalent with respect to the class of generated proba-
bility distributions. The proofs are straightforward and are omitted due to space
limitations.

2.3. Seed automata and seed sensitivity

Since the advent of spaced seeds,8,18 different extensions of this idea have been
proposed in the literature (see Introduction). For all of them, the set of possible
alignment fragments matched by a seed (or by a set of seeds) is a finite set, and
therefore the set of matched alignments is a regular language. For the original
spaced seed model, this observation was used by Buhler et al.7 who proposed an
algorithm for computing the seed sensitivity based on a DFA defining the language
of alignments matched by the seed. In this paper, we extend this approach to a
general one that allows a uniform computation of seed sensitivity for a wide class of
settings including different probability distributions on target alignments, as well
as different seed definitions.

Consider a seed (or a set of seeds) π under a given seed model. We assume
that the set of alignments Lπ matched by π is a regular language recognized by a
DFA Sπ = 〈QS , q0

S , QF
S ,A, ψS〉. Consider a finite set LT of target alignments and a

probability transducer G. Under this assumptions, the sensitivity of π is defined as
the conditional probability

PG(LT ∩ Lπ)
PG(LT)

. (1)

An automaton recognizing L = LT ∩ Lπ can be obtained as the prod-
uct of automata T and Sπ recognizing LT and Lπ respectively. Let K =
〈QK , q0

K , QF
K ,A, ψK〉 be this automaton. We now consider the product W of K

and G, denoted K × G, defined as follows.

Definition 2.3. Given a DFA K = 〈QK , q0
K , QF

K ,A, ψK〉 and a probability trans-
ducer G = 〈QG, q0

G,A, ρG〉, the product of K and G is the probability-weighted
automaton W = 〈QW , q0

W , QF
W ,A, ρW 〉 (for short, PW-automaton) such that

• QW = QK × QG,
• q0

W = (q0
K , q0

G),
• qF

W = {(qK , qG)|qK ∈ QF
K},

• ρW ((qK , qG), a, (q′K , q′G)) =
{ ρG(qG, a, q′

G) if ψK(qK , a) = q′
K .

0 otherwise.

W can be viewed as a non-deterministic probability transducer with final states.
ρW ((qK , qG), a, (q′K , q′G)) is the probability of the transition 〈(qK , qG), a, (q′K , q′G)〉.
A path in W is called full if it goes from the initial to a final state.

Lemma 2.1. Let G be a probability transducer. Let L be a finite language and
K be a deterministic automaton recognizing L. Let W = G × K. The probability
PG(L) is equal to sum of probabilities of all full paths in W .

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

558 G. Kucherov, L. Noé & M. Roytberg

Proof. Since K is a deterministic automaton, each word w ∈ L corresponds to
a single accepting path in K and the paths in G labeled w (see Definition 2.1)
are in one-to-one correspondence with the full path in W accepting w. By defini-
tion, PG(w) is equal to the sum of probabilities of all paths in G labeled w. Each
such path corresponds to a unique path in W , with the same probability. There-
fore, the probability of w is the sum of probabilities of corresponding paths in W .
Each such path is a full path, and paths for distinct words w are disjoint. The
lemma follows.

2.4. Computing seed sensitivity

Lemma 2.1 reduces the computation of seed sensitivity to a computation of the
sum of probabilities of paths in a PW-automaton.

Lemma 2.2. Consider an alignment alphabet A, a finite set LT ⊆ A∗ of target
alignments, and a set Lπ ⊆ A∗ of all alignments matched by a given seed π. Let
K = 〈QK , q0

t , QF
K ,A, ψQ〉 be an acyclic DFA recognizing the language L = LT ∩Lπ.

Let further G = 〈QG, q0
G,A, ρ〉 be a probability transducer defining a probability

distribution on the set LT . Then PG(L) can be computed in time

O(|QG|2 · |QK | · |A|) (2)

and space

O(|QG| · |QK |). (3)

Proof. By Lemma 2.1, the probability of L with respect to G can be computed
as the sum of probabilities of all full paths in W . Since K is an acyclic automa-
ton, so is W . Therefore, the sum of probabilities of all full paths in W leading to
final states qF

W can be computed by a classical DP algorithm21 applied to acyclic
directed graphs (Ref. 12 presents a survey of application of this technique to differ-
ent bioinformatic problems). The time complexity of the algorithm is proportional
to the number of transitions in W . W has |QG| · |QK | states, and for each letter of
A, each state has at most |QG| outgoing transitions. The bounds follow.

Lemma 2.2 provides a general approach to compute the seed sensitivity. To
apply the approach, one has to define three automata:

• a deterministic acyclic DFA T specifying a set of target alignments over an
alphabet A (e.g. all words of a given length, possibly verifying some additional
properties),

• a (generally non-deterministic) probability transducer G specifying a probability
distribution on target alignments (e.g. Bernoulli model, Markov sequence of order
k, HMM),

• a deterministic DFA Sπ specifying the seed model via a set of matched alignments.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 559

As soon as these three automata are defined, Lemma 2.2 can be used to compute
probabilities PG(LT ∩ Lπ) and PG(LT) in order to estimate the seed sensitivity
according to (1).

Note that if the probability transducer G is deterministic (as it is the case
for Bernoulli models or Markov sequences), then the time complexity (2) is
O(|QG| · |QK | · |A|). In general, the complexity of the algorithm can be improved
by reducing the involved automata. Buhler et al.7 introduced the idea of using
the Aho–Corasick automaton1 as the seed automaton Sπ for a spaced seed. The
authors of Ref. 7 considered all binary alignments of a fixed length n distributed
according to a Markov model of order k. In this setting, the obtained complex-
ity was O(w2s−w2kn), where s and w are the seed’s span and weight respectively.
Given that the size of the Aho–Corasick automaton is O(w2s−w), this complexity
is automatically implied by Lemma 2, as the size of the probability transducer is
O(2k), and that of the target alignment automaton is O(n). Compared to Ref. 7,
our approach explicitly distinguishes the descriptions of matched alignments and
their probabilities, which allows us to automatically extend the algorithm to more
general cases.

Note that the idea of using the Aho–Corasick automaton can be applied to
more general seed models than individual spaced seeds (e.g. to multiple spaced
seeds, as pointed out in Ref. 7). In fact, all currently proposed seed models can
be described by a finite set of matched alignment fragments, for which the Aho–
Corasick automaton can be constructed. We will use this remark in later sections.

The sensitivity of a spaced seed with respect to an HMM-specified probabil-
ity distribution over binary target alignments of a given length n was studied by
Brejova et al.5 The DP algorithm of Ref. 5 has a lot in common with the algo-
rithm implied by Lemma 2.2. In particular, the states of the algorithm of Ref. 5
are triples 〈w, q, m〉, where w is a prefix of the seed π, q is a state of the HMM,
and m ∈ [0 · · ·n]. The states therefore correspond to the construction implied by
Lemma 2.2. However, the authors of Ref. 5 do not consider any automata, which
does not allow to optimize the preprocessing step (counterpart of the automaton
construction) and, on the other hand, does not allow to extend the algorithm to
more general seed models and/or different sets of target alignments.

A key to an efficient solution of the sensitivity problem remains the definition of
the seed. It should be expressive enough to be able to take into account properties
of biological sequences. On the other hand, it should be simple enough to be able
to locate seeds fast and to get an efficient algorithm for computing seed sensitivity.
According to the approach presented in this section, the latter is directly related
to the size of a DFA specifying the seed.

3. Subset Seeds

3.1. Definition

Ordinary spaced seeds use the simplest possible binary “match-mismatch” align-
ment model that allows an efficient implementation by hashing all occurring

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

560 G. Kucherov, L. Noé & M. Roytberg

combinations of matching positions. A powerful generalization of spaced seeds,
called vector seeds, has been introduced in Ref. 4. Vector seeds allow one to use
an arbitrary alignment alphabet and, on the other hand, provide a flexible defini-
tion of a hit based on a cooperative contribution of seed positions. A much higher
expressiveness of vector seeds lead to more complicated algorithms and, in par-
ticular, prevents the application of direct hashing methods at the seed location
stage.

In this section, we consider subset seeds that have an intermediate expressiveness
between spaced and vector seeds. It allows an arbitrary alignment alphabet and,
on the other hand, still allows using a direct hashing for locating seed, which maps
each string to a unique entry of the hash table. We also propose a construction
of a seed automaton for subset seeds, different from the Aho–Corasick automaton.
The automaton has O(w2s−w) states regardless of the size of the alignment alphabet,
where s and w are respectively the span of the seed and the number of “must-match”
positions. From the general algorithmic framework presented in the previous section
(Lemma 2.2), this implies that the seed sensitivity can be computed for subset seeds
with same complexity as for ordinary spaced seeds. Note also that for the binary
alignment alphabet, this bound is the same as the one implied by the Aho–Corasick
automaton. However, for larger alphabets, the Aho–Corasick construction leads to
O(w|A|s−w) states. In the experimental part of this paper (Sec. 4.1) we will show
that even for the binary alphabet, our automaton construction yields a smaller
number of states in practice.

Consider an alignment alphabet A. We always assume that A contains a sym-
bol 1, interpreted as “match”. A subset seed is defined as a word over a seed alphabet
B, such that

• letters of B denote subsets of alphabet A containing 1 (B ⊆ 2A \ 2A\{1}),
• B contains a letter # that denotes subset {1},
• a subset seed b1b2 · · · bm ∈ Bm matches an alignment fragment a1a2 · · · am ∈ Am

if ∀i ∈ [1 · · ·m], ai ∈ bi.

The #-weight of a subset seed π is the number of # in π and the span of π is
its length.

Example 3.1. Reference 19 considered the alignment alphabet A = {1, h, 0} rep-
resenting respectively a match, a transition mismatch, or a transversion mismatch
in a DNA sequence alignment. The seed alphabet is B = {#, @, } denoting respec-
tively subsets {1}, {1, h}, and {1, h, 0}. Thus, seed π = #@ # matches alignment
s = 10h1h1101 at positions 4 and 6. The span of π is 4, and the #-weight of π is 2.

Note that unlike ordinary spaced seeds over the binary alphabet, the #-weight
cannot serve as a measure of seed selectivity. In the above example, symbol @ should
be assigned weight 0.5, so that the weight of π is 2.5 (see Ref. 19).

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 561

3.2. Subset seed automaton

Let us fix an alignment alphabet A, a seed alphabet B, and a seed π = π1π2 · · ·πm ∈
B∗ of span m and #-weight w. Let Rπ be the set of all non-# positions in π,
|Rπ| = r = m−w. We now define an automaton Sπ = 〈Q, q0, Qf ,A, ψ : Q×A → Q〉
that recognizes the set of all alignments matched by π.

The states Q of Sπ are pairs 〈X, t〉 such that X ⊆ Rπ , t ∈ [0 · · ·m], with the
following invariant condition. Suppose that Sπ has read a prefix s1 · · · sp of an
alignment s and has come to a state 〈X, t〉. Then t is the length of the longest suffix
of s1 · · · sp of the form 1i, i ≤ m, and X contains all positions xi ∈ Rπ such that
prefix π1 · · ·πxi of π matches a suffix of s1 · · · sp−t.

Example 3.2. In the framework of Example 3.2, consider a seed π and an align-
ment prefix s of length p = 11 given on Figs. 1(a) and (b) respectively. The length t

of the last run of 1’s of s is 2. The last mismatch position of s is s9 = h. The set Rπ

of non-# positions of π is {2, 4, 7} and π has 3 prefixes ending at positions of Rπ

(Fig. 1(c)). Prefixes π1...2 and π1...7 do match suffixes of s1 s2 · · · s9, and prefix π1...4

does not. Thus, the state of the automaton after reading s1 s2 · · · s11 is 〈{2, 7}, 2〉.
The initial state q0 of Sπ is the state 〈∅, 0〉. The final states Qf of Sπ are all

states q = 〈X, t〉, where max{X}+t = m. All final states are merged into one state.
The transition function ψ(q, a) is defined as follows: If q is a final state, then

∀a ∈ A, ψ(q, a) = q. If q = 〈X, t〉 is a non-final state, then

• if a = 1 then ψ(q, a) = 〈X, t + 1〉,
• otherwise ψ(q, a) = 〈XU ∪ XV , 0〉 with

— XU = {x|x ≤ t + 1 and a matches πx}
— XV = {x + t + 1|x ∈ X and a matches πx+t+1}

Lemma 3.1. The automaton Sπ accepts the set of all alignments matched by π.

Proof. It can be verified by induction that the invariant condition on the states
〈X, t〉 ∈ Q is preserved by the transition function ψ. The final states verify
max{X}+ t = m, which implies that π matches a suffix of s1 · · · sp.

Lemma 3.2. The number of states of the automaton Sπ is no more than (w+1)2r.

(a) π = # @ # # # # # #

(b) s = 1 1 1 h 1 0 1 1 h 1 1 ...

(c)

s9 t

1 1 1 h 1 0 1 1 h 1 1 ...
π1..7 =# @ # # #

π1..4 =# @ #
π1..2 =# @

Fig. 1. Illustration to Example 2.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

562 G. Kucherov, L. Noé & M. Roytberg

Proof. Assume that Rπ = {x1, x2, . . . , xr} and x1 < x2 · · · < xr. Let Qi be the set
of non-final states 〈X, t〉 with max{X} = xi, i ∈ [1 · · · r]. For states q = 〈X, t〉 ∈ Qi

there are 2i−1 possible values of X and m−xi possible values of t, as max{X}+ t ≤
m − 1.

Thus,

|Qi| ≤ 2i−1(m − xi) ≤ 2i−1(m − i), and (4)
r∑

i=1

|Qi| ≤
r∑

i=1

2i−1(m − i) = (m − r + 1)2r − m − 1. (5)

Besides states Qi, Q contains m states 〈∅, t〉 (t ∈ [0 · · ·m − 1]) and one final state.
Thus, |Q| ≤ (m − r + 1)2r = (w + 1)2r.

Note that if π starts with #, which is always the case for ordinary spaced seeds,
then Xi ≥ i + 1, i ∈ [1 · · · r], and the bound of (4) rewrites to 2i−1(m− i− 1). This
results in the same number of states w2r as for the Aho–Corasick automaton.7

The construction of automaton Sπ is optimal, in the sense that no two states can
be merged in general. A straightforward generation of the transition table of the
automaton Sπ can be performed in time O(r · w · 2r · |A|). A more complicated
algorithm allows one to reduce the bound to O(w · 2r · |A|). In the next section, we
demonstrate experimentally that on average, our construction yields a very compact
automaton, close to the minimal one. Together with the general approach of Sec. 2,
this provides a fast algorithm for computing the sensitivity of subset seeds and,
in turn, allows to perform an efficient design of spaced seeds well-adapted to the
similarity search problem under interest.

4. Experiments

Several types of experiments have been performed to test the practical applicability
of the results of Secs. 2, 3. We focused on DNA similarity search, and set the align-
ment alphabet A to {1, h, 0} (match, transition, transversion). For subset seeds,
the seed alphabet B was set to {#, @, }, where # = {1}, @ = {1, h}, = {1, h, 0}
(see Example 3.1). The weight of a subset seed is computed by assigning weights
1, 0.5 and 0 to symbols #, @ and respectively.

4.1. Size of the automaton

We compared the size of the automaton Sπ defined in Sec. 3 and the Aho–Corasick
automaton,1 both for ordinary spaced seeds (binary seed alphabet) and for subset
seeds. The Aho–Corasick automaton for spaced seeds was constructed as defined
in Ref. 7. For subset seeds, a straightforward generalization was considered: the
Aho–Corasick construction was applied to the set of alignment fragments matched
by the seed.

Tables 1(a) and 1(b) present the results for spaced seeds and subset seeds respec-
tively. For each seed weight w, we computed the average number of states (avg.

size) of the Aho–Corasick automaton and our automaton Sπ, and reported the

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 563

Table 1. Comparison of the average number of states of
Aho-Corasick automaton, automaton Sπ of Sec. 3 and
minimized automaton.

(a)

Spaced
Aho–Corasick Sπ Minimized

w avg. s δ avg. s δ avg. s

9 345.94 3.06 146.28 1.29 113.21
10 380.90 3.16 155.11 1.29 120.61
11 415.37 3.25 163.81 1.28 127.62
12 449.47 3.33 172.38 1.28 134.91
13 483,27 3.41 180.89 1.28 141.84

(b)

Subset
Aho–Corasick Sπ Minimized

w avg. s δ avg. s δ avg. s

9 1900.65 15.97 167.63 1.41 119,00
10 2103.99 16.50 177.92 1.40 127.49
11 2306.32 16.96 188.05 1.38 135.95
12 2507.85 17.42 198.12 1.38 144.00
13 2709.01 17.78 208.10 1.37 152.29

corresponding ratio (δ) with respect to the average number of states of the mini-
mized automaton. The average was computed over all seeds of span up to w + 8
for spaced seeds and all seeds of span up to w + 5 with two @’s for subset seeds.
Interestingly, our automaton turns out to be more compact than the Aho–Corasick
automaton not only on non-binary alphabets (which was expected), but also on
the binary alphabet (cf. Table 1(a)). Note that for a given seed, one can define a
surjective mapping from the states of the Aho–Corasick automaton onto the states
of our automaton. This implies that our automaton has always no more states than
the Aho–Corasick automaton.

4.2. Seed design

In this part, we considered several probability transducers to design spaced or sub-
set seeds. The target alignments included all alignments of length 64 on alphabet
{1, h, 0}. Four probability transducers have been studied (analogous to those intro-
duced in Ref. 3):

• B: Bernoulli model
• DT 1: deterministic probability transducer specifying probabilities of {1, h, 0} at

each codon position (extension of the M (3) model of Ref. 3 to the three-letter
alphabet),

• DT 2: deterministic probability transducer specifying probabilities of each of the
27 codon instances {1, h, 0}3 (extension of the M (8) model of Ref. 3 to the
three-letter alphabet),

• NT : non-deterministic probability transducer combining four copies of DT 2 spec-
ifying four distinct codon conservation levels (called HMM model in Ref. 3).

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

564 G. Kucherov, L. Noé & M. Roytberg

Models DT 1, DT 2 and NT have been trained on alignments resulting from a
pairwise comparison of 40 bacteria genomes. Details of the training procedure as
well as the resulting parameter values are given in Appendix A.

For each of the four probability transducers, we computed the best seed of
weight w (w = 9, 10, 11, 12) among two categories: ordinary spaced seeds of weight
w and subset seeds of weight w with two @. Ordinary spaced seeds were enumerated
exhaustively up to a given span, and for each seed, the sensitivity was computed
using the algorithmic approach of Sec. 2 and the seed automaton construction
of Sec. 3. Each such computation took between 10 and 500ms on a Pentium IV
2.4GHz computer depending on the seed weight/span and the model used. In each
experiment, the most sensitive seed found has been kept. The results are presented
in Tables 2–5.

In all cases, subset seeds yield a better sensitivity than ordinary spaced seeds.
The sensitivity increment varies up to 0.04 which is a notable increase. As shown in
Ref. 19, the gain in using subset seeds increases substantially when the transition

Table 2. Best seeds and their sensitivity for probability transducer B.

w Spaced Seeds Sens. Subset Seeds, Two @ Sens.

9 ### # # ## ## 0.4183 ### # #@# @## 0.4443
10 ## ## ## # ### 0.2876 ### @# @# # ### 0.3077
11 ### ### # # ### 0.1906 ##@# ## # # @### 0.2056
12 ### # ## # ## ### 0.1375 ##@# # ## #@ #### 0.1481

Table 3. Best seeds and their sensitivity for probability transducer DT1.

w Spaced Seeds Sens. Subset Seeds, Two @ Sens.

9 ### ## ## ## 0.4350 ##@ ## ## ##@ 0.4456
10 ## ## ## ## ## 0.3106 ## ## @## ##@# 0.3173
11 ## ## ## ## ### 0.2126 ##@#@ ## ## ### 0.2173
12 ## ## ## ## #### 0.1418 ## @### ## ##@## 0.1477

Table 4. Best seeds and their sensitivity for probability transducer DT2.

w Spaced Seeds Sens. Subset Seeds, Two @ Sens.

9 # ## ## ## ## 0.5121 # #@ ## @ ## ## 0.5323
10 ## ## ## ## ## 0.3847 ## @# ## @ ## ## 0.4011
11 ## ## # # # ## ## 0.2813 ## ## @# # # #@ ## 0.2931
12 ## ## ## # # ## ## 0.1972 ## ## #@ ## @ ## ## 0.2047

Table 5. Best seeds and their sensitivity for probability transducer NT .

w Spaced Seeds Sens. Subset Seeds, Two @ Sens.

9 ## ## ## ## # 0.5253 ## @@ ## ## ## 0.5420
10 ## ## ## ## ## 0.4123 ## ## ## @@ ## # 0.4190
11 ## ## ## ## ## # 0.3112 ## ## ## @@ ## ## 0.3219
12 ## ## ## ## ## ## 0.2349 ## ## ## @@ ## ## # 0.2412

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 565

Table 6. Comparative test of subset seeds vs spaced seeds. Reported execution times (min:sec)
were obtained on a Pentium IV 2.4GHz computer.

Seed Time # align # ex. align ex. align length

DT2, w = 9, spaced seed 15:14 19101 1583 130512
DT2, w = 9, subset seed, two @ 14:01 20127 1686 141560

DT2, w = 10, spaced seed 8:45 18284 1105 10174
DT2, w = 10, subset seed, two @ 8:27 18521 1351 12213

NT , w = 9, spaced seed 42:23 20490 1212 136049
NT , w = 9, subset seed, two @ 41:58 21305 1497 150127

NT , w = 10, spaced seed 11:45 19750 942 85208
NT , w = 10, subset seed, two @ 10:31 21652 1167 91240

probability is greater than the inversion probability, which is very often the case in
related genomes.

4.3. Comparative performance of spaced and subset seeds

We performed a series of whole genome comparisons in order to compare the per-
formance of designed spaced and subset seeds. Eight complete bacterial genomesa

have been processed against each other using the YASS software.19 Each compari-
son was done twice: one with a spaced seed and another with a subset seed of the
same weight.

The threshold E-value for the output alignments was set to 10, and for each
comparison, the number of alignments with E-value smaller than 10−3 found by
each seed, and the number of exclusive alignments were reported. By “exclusive
alignment” we mean any alignment of E-value less than 10−3 that does not share
a common part (do not overlap in both compared sequences) with any alignment
found by another seed. To take into account a possible bias caused by splitting
alignments into smaller ones (X-drop effect), we also computed the total length of
exclusive alignments. Table 6 summarizes these experiments for weights 9 and 10
and the DT 2 and NT probabilistic models. Each line corresponds to a seed given
in Table 4 or Table 5, depending on the indicated probabilistic model. In all cases,
best subset seeds detect from 1% to 8% more significant alignments compared to
best spaced seeds of same weight.

5. Discussion

We introduced a general framework for computing the seed sensitivity for various
similarity search settings. The approach can be seen as a generalization of methods
of Refs. 7, 5 in that it allows to obtain algorithms with the same worst-case com-
plexity bounds as those proposed in these papers, but also allows to obtain efficient

aNC 000907.fna, NC 002662.fna, NC 003317.fna, NC 003454.fna, NC 004113.fna, NC 001263.fna,
NC 003112.fna obtained from NCBI.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

566 G. Kucherov, L. Noé & M. Roytberg

algorithms for new formulations of the seed sensitivity problem. This versatility is
achieved by distinguishing and treating separately the three ingredients of the seed
sensitivity problem: a set of target alignments, an associated probability distribu-
tions, and a seed model.

We then studied a new concept of subset seeds which represents an interesting
compromise between the efficiency of spaced seeds and the flexibility of vector seeds.
For this type of seeds, we defined an automaton with O(w2r) states (w the number
of #’s in the seed and r the number of other symbols) regardless of the size of the
alignment alphabet A, and showed that its transition table can be constructed in
time O(w2r |A|). Projected to the case of spaced seeds, this construction gives the
same worst-case bound as the Aho–Corasick automaton of Ref. 7, but results in a
smaller number of states in practice. Different experiments we have done confirm the
practical efficiency of the whole method, both at the level of computing sensitivity
for designing good seeds, as well as using those seeds for DNA similarity search.

As far as the future work is concerned, it would be interesting to study the
design of efficient spaced seeds for protein sequence search (see Ref. 6), as well as
to combine spaced seeds with other techniques such as seed families16,17,20 or the
group hit criterion.19

Acknowledgments

G. Kucherov and L. Noé have been supported by the ACI IMPBio of the French
Ministry of Research. A part of this work has been done during a stay of
M. Roytberg at LORIA, Nancy, supported by INRIA. M. Roytberg has also
been supported by the Russian Foundation for Basic Research (projects 03-04-
49469, 02-07-90412), a contract of Russian Ministry of Science and Education
(No. 02.434.11.1008) and by grants from the RF Ministry of Industry, Science and
Technology (20/2002, 5/2003) and NWO (Netherlands Science Foundation). The
three authors have also been supported by the ECO-NET program of the French
Ministry of Foreign Affairs.

Appendix A. Training Probability Transducers

Forty complete bacterial genomesb have been downloaded from NCBI. YASS19

has been run on each pair of genomes to detect alignments with E-value at most

bNC 000117.fna, NC 000907.fna, NC 000909.fna, NC 000922.fna, NC 000962.fna,

NC 001263.fna, NC 001318.fna, NC 002162.fna, NC 002488.fna, NC 002505.fna,
NC 002516.fna, NC 002662.fna, NC 002678.fna, NC 002696.fna, NC 002737.fna,
NC 002927.fna, NC 003037.fna, NC 003062.fna, NC 003112.fna, NC 003210.fna,
NC 003295.fna, NC 003317.fna, NC 003454.fna, NC 003551.fna, NC 003869.fna,
NC 003995.fna, NC 004113.fna, NC 004307.fna, NC 004342.fna, NC 004551.fna,
NC 004631.fna, NC 004668.fna, NC 004757.fna, NC 005027.fna, NC 005061.fna,
NC 005085.fna, NC 005125.fna, NC 005213.fna, NC 005303.fna, NC 005363.fna

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 567

10−3. Resulting ungapped regions of length 64 or more have been used to train
models DT 1, DT 2 and NT by the maximal likelihood criterion. Table 7 gives the
ρ function of the probability transducer DT 1, that specifies the probabilities of
match (1), transition (h) and transversion (0) at each codon position.

Table 8 specifies the probability of each codon instance a1a2a3 ∈ A3, used to
define the probability transducer DT 2.

Finally, Table 9 specifies the probability transducer NT by specifying the four
DT 2 models together with transition probabilities between the initial states of each
of these models.

Table 7. Parameters of the DT1 model.

a 0 h 1

ρ(q0, a, q1) 0.2398 0.2945 0.4657
ρ(q1, a, q2) 0.1351 0.1526 0.7123
ρ(q2, a, q0) 0.1362 0.1489 0.7150

Table 8. Probability of each codon instance specified by the DT2 model.

a1\a2a3 00 0h 01 h0 hh h1 10 1h 11

0 0.01089 0.01329 0.01311 0.01107 0.00924 0.01144 0.01887 0.01946 0.03106
h 0.01022 0.00984 0.01093 0.00956 0.01025 0.01294 0.02155 0.02552 0.03983
1 0.02083 0.02158 0.02554 0.02537 0.02604 0.03776 0.11298 0.16165 0.27915

Table 9. Probabilities specified by the NT model.

Pr(qi → qj) j = 0 1 2 3

i = 0 0.9053 0.0947 0 0

1 0.1799 0.6963 0.1238 0
2 0 0.2131 0.6959 0.0910
3 0.0699 0.0413 0.1287 0.7601

a1\a2a3 : 00 0h 01 h0 hh h1 10 1h 11

0 0.01577 0.01742 0.01440 0.01511 0.01215 0.01135 0.02502 0.02353 0.02786
q0 : h 0.01478 0.01365 0.01266 0.01348 0.01324 0.01346 0.02815 0.02981 0.03442

1 0.02701 0.02838 0.02600 0.03429 0.03158 0.03406 0.12973 0.17461 0.17809

0 0.00962 0.01241 0.01501 0.00891 0.00753 0.01247 0.01791 0.01841 0.03530
q1 : h 0.00818 0.00766 0.01115 0.00738 0.00952 0.01353 0.01828 0.02978 0.04405

1 0.01946 0.01682 0.02344 0.02456 0.02668 0.03890 0.12113 0.18170 0.26020

0 0.00406 0.00692 0.00954 0.00501 0.00372 0.00841 0.01034 0.01129 0.03430
q2 : h 0.00391 0.00396 0.00758 0.00364 0.00707 0.01473 0.01288 0.01975 0.05058

1 0.01250 0.01627 0.02416 0.01419 0.02071 0.04427 0.10014 0.15311 0.39698

0 0.00302 0.00267 0.00560 0.00289 0.00249 0.00807 0.00740 0.00710 0.03195
q3 : h 0.00297 0.00261 0.00355 0.00299 0.00271 0.00935 0.00924 0.01148 0.04296

1 0.01035 0.01125 0.02204 0.00930 0.01289 0.04235 0.05304 0.08163 0.59810

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

568 G. Kucherov, L. Noé & M. Roytberg

References

1. Aho AV, Corasick MJ, Efficient string matching: An aid to bibliographic search,
Communications of the ACM 18(6):333–340, 1975.

2. Altschul S, Madden T, Schäffer A et al., Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs, Nucleic Acids Res 25(17):3389–3402,
1997.

3. Brejova B, Brown D, Vinar T, Optimal spaced seeds for Hidden Markov Models,
with application to homologous coding regions, in Crochemore M, Baeza-Yates R,
Chavez E (eds.) Proc 14th Symp Combinatorial Pattern Matching, Morelia (Mexico),
Lecture Notes Computer Science, Vol. 2676 (Springer, 2003), pp. 42–54.

4. Brejova B, Brown D, Vinar T, Vector seeds: An extension to spaced seeds allows sub-
stantial improvements in sensitivity and specificity, in Benson G, Page R (eds.) Proc
3rd Int Workshop Algorithms Bioinformatics (WABI), Budapest (Hungary), Lecture
Notes Computer Science, Vol. 2812 (Springer, 2003).

5. Brejova B, Brown D, Vinar T, Optimal spaced seeds for homologous coding regions,
J Bioinformatics Computational Biol 1(4):595–610, 2004.

6. Brown D, Optimizing multiple seeds for protein homology search, IEEE Trans
Computational Biol Bioinformatics 2(1):29–38, 2005.

7. Buhler J, Keich U, Sun Y, Designing seeds for similarity search in genomic DNA, in
Proc 7th Annu Int Conf Computational Mol Biol (RECOMB03), ACM Press, Berlin
(Germany), pp. 67–75, 2003.

8. Burkhardt S, Kärkkäinen J, Better filtering with gapped q-grams, Fundamenta Infor-
maticae 56(1–2):51–70, 2003; preliminary version in Combinatorial Pattern Matching,
2001.

9. Chen W, Sung W, On half gapped seed, Genome Informatics 14:176–185, 2003; pre-
liminary version in the 14th International Conference on Genome Informatics (GIW).

10. Choi KP, Zeng F, Zhang L, Good spaced seeds for homology search, Bioinformatics
20:1053–1059, 2004.

11. Choi KP, Zhang L, Sensitivity analysis and efficient method for identifying optimal
spaced seeds, J Comput Sys Sci 68:22–40, 2004.

12. Finkelstein AV, Roytberg MA, Computation of biopolymers: A general approach to
different problems, BioSystems 30(1–3):1–19, 1993.

13. Keich U, Li M, Ma B, Tromp J, On spaced seeds for similarity search, Discrete Applied
Mathematics 138(3):253–263, 2004; preliminary version in 2002.

14. Kent JW, BLAT–the BLAST-like alignment tool, Genome Res 12(1):656–664, 2002.
15. Kucherov G, Noé L, Ponty Y, Estimating seed sensitivity on homogeneous alignments,

in Proc IEEE 4th Symp Bioinformatics Bioengineering (BIBE 2004), May 19–21,
2004, Taichung (Taiwan), IEEE Computer Society Press, pp. 387–394, 2004.

16. Kucherov G, Noé L, Roytberg M, Multiseed lossless filtration, IEEE Trans Compu-
tational Biol Bioinformatics 2(1):51–61, 2005.

17. Li M, Ma B, Kisman D, Tromp J, PatternHunter II: Highly sensitive and fast homol-
ogy search, J Bioinformatics Computational Biol 2004; Earlier version in GIW 2003
(International Conference on Genome Informatics).

18. Ma B, Tromp J, Li M, PatternHunter: Faster and more sensitive homology search,
Bioinformatics 18(3):440–445, 2002.

19. Noé L, Kucherov G, Improved hit criteria for DNA local alignment, BMC Bioinfor-
matics 5(149), 2004.

20. Sun Y, Buhler J, Designing multiple simultaneous seeds for DNA similarity search,
in Proc 8th Annu Int Conf Computational Mol Biol (RECOMB04), San Diego
(California), ACM Press, 2004.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

June 21, 2006 12:9 WSPC/185-JBCB 00197

A Unifying Framework for Seed Sensitivity and Its Application to Subset Seeds 569

21. Ullman J, Aho A, Hopcroft J, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, 1974.

22. Xu J, Brown D, Li M, Ma B, Optimizing multiple spaced seeds for homology search, in
Proc 15th Symp Combinatorial Pattern Matching, Istambul (Turkey), Lecture Notes
Computer Science, Vol. 3109 (Springer, 2004), pp. 47–58.

23. Yang I, Wang S, Chen Y et al., Efficient methods for generating optimal single and
multiple spaced seeds, in Proc IEEE 4th Symp Bioinformatics Bioengineering (BIBE
2004), May 19–21, 2004, Taichung (Taiwan), IEEE Computer Society Press, 2004,
pp. 411–416.

Gregory Kucherov is a CNRS senior researcher in the bioin-
formatics group of the Lille Computer Science Lab (LIFL).
Previously, he worked with INRIA in the LORIA research unit
in Nancy, France. He got his Ph.D. degree in Computer Science
in 1988 from the USSR Academy of Sciences, and a Habilita-
tion degree in 2000 from the Henri Poincar University in Nancy.
For the last ten years, he has been doing research on word
combinatorics, text algorithms and combinatorial algorithms for
bioinformatics and computational biology.

Laurent Noé is a lecturer at the Lille 1 University and a mem-
ber of the bioinformatics group of the Lille Computer Science
Lab (LIFL). He studied computer science at the ESIAL engi-
neering school in Nancy, France. He received the MS degree in
2002 and his Ph.D. degree in Computer Science in 2005 from the
Henri Poincar University in Nancy.

Mikhail Roytberg is a leader of the Computational Molecu-
lar Biology Group in the Institute of Mathematical Problems
in Biology of the Russian Academy of Sciences at Pushchino,
Russia. He got his Ph.D. degree in Computer Science in 1983
from Moscow State University. During last years his main
research field has been the development of algorithms for com-
parative analysis of biological sequences.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

06
.0

4:
55

3-
56

9.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
G

IL
L

 U
N

IV
E

R
SI

T
Y

 o
n

01
/2

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

