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Recognition of Genes in Human DNA Sequences
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ABSTRACT

A new approach to computer-assisted gene recognition in higher eukaryote DNA is sug-
gested. It allows one to use not only linear functions for scoring structures, but all functions
satisfying natural monotonicity conditions. The algorithm constructs the set of structures
guaranteed to contain an optimal structure for every function. So, it uncouples the time-
consuming step of generation of this set from the fast step of structure scoring, thus making
it simple to experiment with different functions. One particular scoring function, taking
into account only codon usage and positional nucleotide frequencies of the splicing sites,
has been implemented in the Genome Recognition and Exon Assembly Tool program, and
has been tested on an independent sample of human genes, yielding 88% sensitivity and
79% specificity.

Key words: exon-intron structure, gene recognition, exons, multicriterial optimization, Pareto set.

1. INTRODUCTION

Recognition of protein coding regions is an important step in computer-assisted analysis of newly
sequenced DNA. It is well known that protein-coding regions have statistical properties different from

those of noncoding regions. Thus it is possible to consider some function measuring these differences and
to evaluate coding potential of open reading frames or sliding windows. This approach has been named
"search by content" (Staden 1984a), and several dozen different coding potentials have been suggested up
to date (Fickett and Tung, 1992; Gelfand, 1995).

The other possibility is to predict functional sites that serve as boundaries of protein-coding regions,
that is, sites of translation initiation and, in the case of higher eukaryotes, splicing sites. Most "search by
signal" algorithms are reviewed in Gelfand (1995).

Unfortunately, the specificity and sensitivity of algorithms for prediction of splicing sites are insufficient
for reliable prediction of exons. On the other hand, the relative shortness of exons in human genes makes
it useless to compute coding potential of open reading frames, whereas the application of sliding window
technique is seriously complicated by statistical noise. Moreover, search by content cannot exactly map
exon boundaries.

These problems are, to some extent, overcome by the combined approach suggested in Gelfand (1990)
and Fields and Soderlund (1990) and further developed in Uberbacher and Mural (1991), Guigo et al
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(1992), Gelfand and Roytberg (1993), Snyder and Stormo (1993, 1995), Milanesi et al (1993), Dong and
Searls (1994), Xu et al (1994), Gelfand et al. (1995). The basic idea is as follows. First, splicing sites
are predicted using a very low recognition threshold so as not to lose any true site. Then all possible
combinations of the candidate sites, each corresponding to some exon-intron structure, are considered.
Each structure is characterized by scores of the corresponding sites and coding potential of the constituent
exons. Some function of these parameters is used to compute the overall structure score.

However, direct implementation of the described approach leads to two major problems. First, in realistic
situations the complete search over the set of all possible structures is computationally unfeasible. Second, it
is difficult to combine in a reasonable way several numerical parameters of diverse nature. These problems
were addressed by empirical techniques based on filtering of candidate exons (Guigo et al, 1992; Milanesi
et al, 1993), the theory of formal languages (Dong and Searls, 1994), and combinations of dynamic
programming and neural networks (Snyder and Stormo, 1993, 1995; Xu et al, 1994).
A somewhat more general approach has been suggested in Gelfand and Roytberg (1993). It can be applied

to a wide class of scoring functions (the only natural requirement is monotonicity on each parameter).
The basic idea is as follows. First, we use the so-called "vector dynamic programming" to construct a set
of structures guaranteed to contain the best structure for any scoring function from our class. This set is
much smaller than the set of all structures. Then the structures within this set are ordered by decrease of
some particular scoring function and one or several leading structures are output as the prediction. The
main advantage of the method is that we uncouple the time-consuming step of structure generation and
the fast step of structure scoring and ordering, thus making it possible to experiment with different scoring
functions and parameters and to apply various pattern recognition and neural network techniques.

Here we report the results of prediction for one particular scoring function. Testing of the algorithm on

an independent set of human genes produced results comparable to those demonstrated by other programs.
We considered also a set of sequence fragments not containing protein-coding regions and demonstrated
that the method is sufficiently specific to recognize this situation.

2. METHODS

2.1. Vector dynamic programming
We start with exons, each of which is characterized by m parameters p\,..., pm. These parameters can

score splicing sites, coding potential, exon length, etc.
Parameters of a structure (chain of exons) consisting of N exons are determined by component-wise

addition, that is, if p¡(i) is the jth parameter of the ith exon (¡' = \,..., N, j = 1,..., m), then the
y'th structure parameter is q¡ = 2~2i=l pj(i). The structure quality is defined as a function R(q\,..., qm)
monotonically increasing on each variable. The monotonicity condition is a natural one and all recently
applied scoring functions satisfy it, whereas the condition of increasing is a technical one and is introduced
purely for clarity of the exposition.

We say that a structure s dominates over a structure t (denoted s >- t), if q¡ (s) > q¡ (t) for all j and
qj(s) > qj(t) for at least one j, j = 1,..., m. Clearly, if s w, then for any quality function R(s) > R(t).

Our aim is to construct the Pareto-optimal set of structures P that contains all structures not dominated
by any other structure and only such structures. More formally,

• for any t g P there exists sei such that s > t;
• if s, s' e P, then neither s > s' nor s' >- s.

It is simple to see that for any quality function R the Pareto set P is guaranteed to contain a structure

maximizing R. Moreover, for any structure s e P there exists a quality function reaching maximum on s.

Thus the Pareto set contains all necessary structures and no "unnecessary" ones.

To describe the vector dynamic programming algorithm building the Pareto set, we extend the definition
of domination to incomplete structures. Denote the length of a structure s by L(s), and denote the donor
site position of its last exon by E(s). We say that s >- t if in addition to the standard conditions the
following constraints are satisfied:
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main begin
CurrentStructures :— 0;
for x := 1 to SequenceLength do begin
if x is at donor site or stop codon then begin
for e G NewExons(x) do begin
for s G NewStructures (e) do begin
for t G CurrentStructures do begin
if s -< t then

go to DoneStructure; /* If s is dominated, forget it */
if s >- t then

CurrentStructures := CurrentStructures \ {i}\ /* If £ is dominated, delete it */
end;
CurrentStructures := CurrentStructures U {s};

end;
DoneStructure:;

end;
end;

end;
P := { t G CurrentStructures | í is complete };
output P;

end.
function NewStructures{e) begin
/* Add e to all suitable structures from CurrentStructures */
if left boundary of e is at start codon then

NewStructures := {e};
if left boundary of e is at acceptor site then begin

NewStructures := 0;
for s G CurrentStructures consistent with e do

NewStructures := NewStructures U {s 0 e};
end;

end.
function NewExons(x) begin

NewExons := {all exons with right boundary x};
end.

FIG. 1. Generation of the Pareto set.

• L(s) = L(t) mod 3;
• E(s) < E(t).

Complete and incomplete structures are incomparable.
The simplest version of the algorithm is shown in Figure 1.
In the beginning the current set of structures CurrentStructures is empty. The current position x moves

along the sequence. If a donor site or a stop codon is encountered, two steps are done. At the first step
we generate all exons ending at x and add each of them to all suitable structures from CurrentStructures,
obtaining the set of candidate structures NewStructures. At the second step we update CurrentStructures.
At the first step we consider all exons with the right boundary x. If an exon begins at a start codon,

it initializes a new structure. (It should be noted that our use of the term exon is slightly different from
the standard biological usage, since we consider only translated exons or translated parts of exons.) If an

exon begins at an acceptor site (note that a pair of an acceptor site and a donor site can generate up to

three candidate exons, since the reading frame is taken into account), it extends suitable structures from
CurrentStructures, and newly generated structures are placed into NewStructures. The requirements are

that the exon does not overlap with exons of the structure to be extended, the reading frame is consistent,
and restrictions on the minimum intron length are satisfied.
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At the second step each structure s from NewStructures is compared with all structures from Cur-
rentStructures (here we omit technical tricks allowing us to skip some comparisons). If s is dominated by
some structure t from CurrentStructures, then the former is not considered further. Similarly, if s dominates
over an old structure t, the latter is deleted from CurrentStructures. Finally, if CurrentStructures does not
contain any structure dominating s, then s is added to CurrentStructures.
At the final stage we extract from CurrentStructures all complete structures and obtain the desired Pareto

set. Indeed, let s and t be structures and let e be an exon. Denote concatenation of exons by 0. It is simple
to see that if s >- t and both structures s Q e and 10« exist, then s © e >- t O e. On the other hand, the
generalized domination conditions guarantee that for an exon e generated at position x and structures s and
t (s > t) existence of t Q e implies existence of s O e. Thus ignoring dominated incomplete structures does
not lead to loss of structures from the Pareto set, and we can sharply decrease the number of considered
structures.

As mentioned above, this is the simplest variant of the algorithm. Let us briefly describe the most

important of the technical tricks allowing us to decrease the size of CurrentStructures and the number of
structure comparisons to be performed.

To decrease the number of structures in CurrentStructures we can redefine domination for incomplete
structures, making it position-dependent. Indeed, if the current position x is so far from both E(s) and
E(t) that each exon ending at x can be added either to both s and t, or to none of them, then we need
not require E(s) < E(t).

Similarity, to decrease the number of structures in NewStructures, we can support for each structure
s G CurrentStructures some flags allowing us to avoid consideration of s O e if it is immediately dominated
by t O e for some t e CurrentStructures.

2.2 Implementation
The algorithm was implemented using the simplest site scoring and coding potential functions.
Splicing sites were scored by the discrimination energy function (Berg and von Hippel, 1987; Gelfand,

1989). Denote the count of nucleotide b at site position k in the learning sample by N(b, k)(k = 1,..., K),
and let N*(k) be the count of the consensus nucleotide, so that N*(k) = maxfc N(b, k). The score of a site
b\.. .bK is defined as

K

S(bx ...bK) = J2log{(N(bk,k) + 0.5}/[N*(k) + 0.5)]
k=l

It is a negative parameter reaching the maximum zero value on the consensus sequence. Denote the average
scores of acceptor and donor sites in the site learning sample by pA and po, and denote the standard
deviations by oA and oD, respectively.

Coding potential of exons was calculated using the simplest variant of the codon usage analysis related
to the one of Staden (1984b). Denote the frequency of the codon abc in the learning sample by F(abc).
The codon weight is defined by

W(abc) = 100[log F(abc)
-

log /^/(log Fmax
-

log F^n)

where /-"max and Fmu, denote the frequencies of the most frequent and the most rare codon in the learning
set, respectively.
A fragment a\b\C\.. .aKbKCK that codes for K amino acids has the coding potential

a:

C(axb\c\... aKbkcK) = Jj W(akbkck)
¡t=i

It is a positive parameter whose value is large if the fragment consists of preferred codons. It coincides up
to a linear transformation with the log-likelihood of the fragment to be generated if the codon probabilities
equal the observed codon frequencies. We denote the average codon weight in the learning sample by pc,
and denote the standard deviation by oc-
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Table 1. Results of Prediction for the Test Set
_of Complete HumanGenes3_
NUM ID SeqL PrL NE Rank Score L.Sc L.L Caa Ov. Un.LNE

1 2 3 4 5 6 7 8 9 10 11 12 13

HUMAT1A
HUMCD43
HUMSPRPC
HUMHIAPPA
HUMREELAS
HUMTCRBRA
HUMTRHYAL

8 HUMDEF5A

9 HUMELAFIN
10 HUMG0S24B
11 HUMNTRI
12 HUMNTRIII
13 HUMGLPEX
14 HUMTNP1
15 HUMETMAGA
16 HUMMRP14A
17 HUMCNP
18 HUMCRPGA
19 HUMCYCAA
20 HUMG0S19B
21 HUMCACY
22 HUMPR0T1B
23 HUMV2R
24 HUMBHSD
25 HUMBNPA
26 HUMTHY1A
27 HUMPRPH1
28 HUMHST
29 HUMI309
30 HUMPGAMMG
31 HUMPNMTA
32 HUMPPPA
33 HUMSAA
34 HUMCRYGBC
35 HUMMCHEMP
36 HUMTNFBA
37 HUMBQ1A
38 HUMPF4VLA
39 HUMG0S19A
40 HUMMIF
41 HUMHSD3BA

1829
3050
2651
7160
2309
736

359
400
89
89

117
118

9591 1898
2800 94

1878
3135
3710
3710
4452
1448
3343
4439
1699
2480
3088
4788
3671
1306
2282
9404
1922
2886
4946
4000
3709
3771
3174
2775
3460
4500
2776
2140
1114
1468
4102
2167
8000

117
326
94
94

201
55

307
114
126
224
105
93
88
50

371
375
134
160
196
206
96

253
282
95

122
175
99

205
142
104
92

115
372

5.18 330 330 0 29 1
1
4

>500
4
1
1
1

4
2

440
101

25
463

2
1
1
1

49

11.54
8.12

5.13
6.56
8.75
7.53

5.13
11.19
6.71
6.70

3.04
7.62
9.74
8.93
9.68
8.03
7.89

4
335

2

>500
1

60
1
1

139
1
3
1
1
1
1
7
1

421

8.97 102
5.50 48
5.80 46

89
0

26

5.80 46 26
11.29 332 326
7.74 157 94
7.51 146 94
10.64 145 145
4.49 58 12
10.06 385 307
9.74 110 110

13
48
20

20
6

63
52
0

46
78
0

12.83
10.23
8.40

11.06
5.60
13.50
13.68
8.25
6.58
9.72
8.72
9.34
8.86
9.91
8.06
9.11
9.07

8.59 271 77 194
7.45 49 46 3
4.62 79 48 31
12.91 381 362 19
11.67 372 325 47
8.99 191 134 57
11.33 287 160 227
10.93 135 123 12

0
89
91

91
0
0
0

46
43
0
4

16
43
2
9

50
0
0

73

5.90 156 25 161 71 6

9.14 219 71 148 68 5

9.96 183 175 8 0 4

8.77 167 92 75 0 4

10.69 419 372 47 49 5
continued
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Table 1. (Continued)
42 HUMCBRG
43 HUMMGPA
44 HUMHAP
45 HUMHLL4G
46 HUMHMG2A
47 HUMHMGIY
48 HUMIBP3
49 HUMIL5A
50 HUMUBILP
51 HUM0P18A
52 HUMLUCT
53 HUMLYTOXBB
54 HUMMK
55 HUMGAD45A
56 HUMDZA2G
57 HUMSFTPLA
58 HUMTBGA
59 HUMAPEXN

3326
7734
3046
4428
4341
6000

10884
3241
3583
6000
3296
4800
4638
5378

10000
4732
5769
3730

60 HUMIGFBP1A 6128
61 HUMIL4A
62 HUMIL8A
63 HUMPPCI
64 HUMFABP
65 HUMPALD
66 HUMC0X5B
67 HUMPSAP
68 HUMTNFX
69 HUMIGFBP1
70 HUMANT2X
71 HUMIL5
72 HUMCAPG
73 HUMGFP40H
74 HUMTRPYIB

9900
5191
6000
5204
7616
2593
4000
3103
6480
3982
3230
3734
4379
2609

277
103
318
135
209
107
291
134
157
148
99

243
144
134
294
248
415
318
259
152
99

406
132
147
129
248
233
259
298
134
255
144
255

5 11.13
499 3.36

1 9.93
48 10.40
3 9.14

1 10.85
164 3.30
186 10.72

1 12.89

308 9.17

64 8.94
18 10.89
1 10.01

1 6.46
2 16.48
3 3.96
1 7.87

11.36 216 211 5
5.05 183 86 97

11.57 167 132 35
9.39 221 209 12
10.78 419 62 357

4.18 127 91
12.03 239 157
8.02 150 142

36
82

462
2
1
2

231
17
41

1

9.53
14.82
8.59
10.97
3.27
9.62
6.71
11.86

10.87 284 197 87
11.72 376 110 266
10.39 177 126 51
13.53 289 289 0
9.99 200 170 30
11.45 330 310 20

7.49 224 142 82
9.12 151 120 31

16.53 425 406 19
4.22 153 116 37

7.65 231 129 102
11.19 309 217 92
15.01 217 217 0

11.10 424 298 126
4.47 146 104 42
10.28 276 255 21
10.53 162 118 44

66 6
17 6

3 3
0 4

45 5

73 6
29 3
6 4

46 6
34 6
8 4
6 5

78 3
115 4

117 4
32 4

0 5
16 4

0
245
16

0
30
0

26

continued

Now let A(s) and D(s) be the sums of scores of the acceptor and donor sites, respectively, forming a

structure s, and let C(s) be the total coding potential of the exons. Denote the structure length (in codons)
by L(s) and the number of exons by N(s). We use the following structure quality function:

R(s) A(s)/{N(s)-l]-pA
oA

D(s)/{N(s)-\\~pD C(s)
-

pcL(s)
OD ocL(Sy/2

The first two terms are the average scores of acceptor and donor sites in the structure, measured in
the standard deviation units. The last term expresses the coding potential in the standard deviation
units; L(s)x/2 in the denominator accounts for the fact that C(s) is the sum of L(s) individual codon
weights. The function R increases on A, D, and C and decreases on N and L (formally, for compati-
bility with the previous section, we can say that R is a function of \/N and \/L increasing on all its
variables).
After construction of the Pareto set the structures are ordered by decrease of R and several best structures

(or just one leader structure) are output as the prediction. In the tested cases the number of structures in
P was within the range of low thousands, and thus a simple ordering procedure was sufficient.

We also considered pc as an adjustable parameter. We analyzed the learning set using two additional
values of pc (data are not shown). It turned out that the best recognition was achieved when pc was

slightly lower than the observed mean. That means that we favor longer structures as compared to the
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Table 1. (Continued)

75 HUMSPROZ 3011 246 5 11 11.93 12.42 248 199 49 47 4
76 HUMPRS17A 4029 135 5 5 7.07 7.11 153 109 44 26 6
77 HUMREGB 3651 166 5 1 10.26
78 HUMEMBPA 3608 221 5

- -

9.84 239 148 91 73 2
79 HUMMIS 3100 560 5 1 15.39
80 HUMCSPB 3393 247 5

-

12.48 290 200 90 47 5
81 HUMPLPSPC 3409 197 5 16 11.21 11.72 327 197 130 0 5
82 HUMOPS 6953 348 5 2 15.80 15.80 411 348 63 0 5
83 HUMFCREB 5131 85 5 >500

-

7.34 27 19 8 66 2
84 HUMKAL2 6139 260 5

- -

9.20 504 164 340 96 5
85 HUMIL9A 4663 140 5 145 6.07 7.16 162 117 45 23 6
86 HUMNKG5PR0 5000 144 5

- -

9.98 220 85 135 59 6
87 HUMGHG 4452 246 5 11 11.66 12.42 248 199 49 47 4
88 HUMGHN 2657 217 5 1 12.03
89 HUMG0S8PP 7345 211 5 4 6.98 7.06 359 211 148 0 6
90 HUMAZCDI 5002 251 5 >500

-

14.85 358 126 232 125 4
91 HUMCHYMASE 4124 247 5 88 8.07 9.00 247 151 96 96 3
92 HUMCHYMB 3279 247 5 17 8.30 8.80 221 151 70 96 3
93 HUMIGERA 7659 239 5

- -

8.54 317 234 83 5 6
94 HUMCSPA 4791 246 5 19 11.66 12.42 248 199 49 47 4
95 HUMGARE 4754 447 5 15 11.83 12.58 526 447 79 0 4
96 HUMPRS6B 4990 249 6 7 7.03 7.25 267 249 18 0 6
97 HUMTDGF1A 7000 189 6

- -

7.57 236 75 161 114 6
98 HUMTPALBU 6172 175 6

- -

11.49 417 124 293 51 6
99 HUMEDHB17 4845 328 6 2 12.82 12.88 329 328 1 0 6

100 HUMMHDOB 5447 273 6 33 10.32 11.36 217 217 0 56 3
101 HUMSAACT 3778 377 6 1 18.86
102 HUMAK1 8000 194 6

-

12.10 242 179 63 15 6
103 HUMIL1B 7824 269 6 2 12.46 12.52 231 219 12 50 6
104 HUMTFPB 13865 295 6 2 9.21 9.28 248 248 0 47 6
105 HUMTROC 4567 161 6 10 14.48 14.77 197 161 36 0 6

a(l) Fragment number. (2) GenBank ID. (3) Sequence length (in nucleotides). (4) Encoded
protein length (in amino acids). (5) Number of translated exons. (6) Rank of the true structure

(dash means that the true structure is not contained in the Pareto set). (7) Score of the true
structure (dash means that the true structure is not among the 500 top ones or is not contained
in the Pareto set). (8) Score of the leader structure (if different from the true structure, same
for the remaining columns). (9) Length of the leader structure (in amino acids). (10) Number
of amino acids common to the true structure and the leader structure. (11) Overpredition
(false amino acids). (12) Underprediction (missed amino acids). (13) Number of exons in the
leader structure.

initial random walk form of the coding potential. After the learning stage the value of pc providing the
best recognition was fixed and this value was used for testing.

The program GREAT (Genome Recognition and Exon Assemby Tool) together with the necessary
parameter files and the source code can be obtained from the authors at misha@imb.imb.ac.ru (M.G.) or

roytberg@impb.serpukhov.su (M.R.)

3. RESULTS

The first version of the program GREAT was tested on an independent random sample of 105 completely
sequenced human genes (Table 1). The total length of the sequences was 480,243 nucleotides; the average
fragment length was 4578 nucleotides. The total length of the coding regions was 69,852 nucleotides
(23,284 codons), and thus the coding regions constituted 14.5% of the sample.
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Table 2. Ranks of True Structures in the Test Set
of Complete Human Genes3

Rank 1 2 3-5 6-10 11-20 21-100 101-500 >500

Number of
sequences 28 10 10 3 8 8 13 4 21

Number of
sequences
at the top 28 38 48 51 59 67 80 84 NA
of the list

Percent of
sequences
at the top 277. 36*/. 467. 497. 567. 647. 767. 807. NA
of the list

"The last column corresponds to structures not contained in the Pareto set.

The quality of prediction can be measured by two kinds of characteristics. First, we can consider the
rank of the true structure in the list of all structures ordered by decrease of the scoring function R (column
6 in Table 1). This shows how many suboptimal structures we have to retain in order to get the true
structure with some given probability. The summary is presented in Table 2. In 28 cases (27%) the true
structure has rank 1, that is, coincides with the leader; in 59 cases (56%) it is among the top 20 structures
from the Pareto set. However, in 21 cases (20%) the true structure was not in the Pareto set. This usually
happened if a structure contained an extremely weak site not found by the site recognition procedure
(the threshold had been set so as not to lose more than 1% of true sites from the learning sample), or
if there was a relatively strong alternative site situated at a short distance (divisible by 3) from one of
the true splicing sites. In the latter case the true structure was dominated by the structure that used this
alternative site.

Another characteristic is the size of overlap between the leader and the true structure (columns 10-12 in
Table 1). The average results were as follows: 88% of the coding region was found (sensitivity 88%) and
79% of the predicted coding region was really coding (specificity 79%). In four cases the overlap between
the true structure and the leader was less than 50% (including one case where there was no overlap between
the leader and the true structure), in four additional cases more than half of the true structure was missing,
and in eight cases more than half of the leader was not coding. On the other hand, in addition to 28 exact

predictions, in 21 cases nothing was lost and in 7 cases nothing was added.
The same set of sequences was submitted to GRAIL-2 file-server (Xu et al, 1994). Results of the testing

were as follows. Specificity was 90%, sensitivity was 82%; there were four exact predictions, nothing was

added in 37 more cases (including two cases when no coding region was predicted at all), nothing was
lost in 18 cases. In one case the overlap between the leader and the true structure was less than 50%,
in one additional case more than half of the predicted coding region was not coding, in 13 cases more

than half of the coding region was missing (including the two cases of no-coding prediction mentioned
above).

We analyzed also whether GREAT could distinguish the situation when a sequence did not contain
any coding regions at all. To do that, 39 intronic or intergenic sequences were analyzed (Table 3). It
turned out that the scores of leaders in such noncoding situations were substantially lower than in analysis
of complete genes (Table 4). In four cases scores of the leader were much higher than those ordinarily
observed in noncoding sequences. It turned out that these fragments contained parts of protein-coding
genes with descriptions not conforming to the standards of the GenBank feature tables. Consequently,
these cases were not included into the tables. On the other hand, it illustrates the sensitivity of the
algorithm.
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Table 3. Results of Prediction for the Set of Sequences
Not Containing Protein-Coding Regions"

NUM

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ID

2

SeqL

3

L.Sc.

4

L.L LNE

5 6

HUMCRYGBC

HUMCSN2A
HUMFMR1S

HUMHP2HPR

HUM0DC1A
HUMPCI

HUMHPRTB

HUMRIGBCHA
HUMTHB

HUMVITDBP

4000
4000
4840
4803
4000
4000
5961
6000
4984
2360
8000
5684
4000
4000
6921
4769
4000
4000
2781
4000
5000
3960
5000
6000
4000
4000
3040
3975
3500
3500
4000
4000
4000
5000
5915
5234
5000
4000
3992

5.10
6.57

55
98
05
40
27
50
04
86
56
23
40
30

3.36
3.87
5.50
4.86
5.46
3.14
5.17
6.38
3.48
4.28
4.02
3.41
4.23
2.71
3.79
3.39
5.63
3.25
3.25
3.05
5.00
3.52
4.92
4.16
3.25

142
105
164
65
26
66

106
14
40
94

103
15

106
231
105
297
150
175
251
119
49

203
197
88

208
31

120
10

152
24

133
10
17
2

73
40
53
35

153

2
3
6
2
1
1
2
1
2
5
2
1
2
2
1
6
6
3
4
3
2
6
6
2
5
1
6
1
6
1
5
1
1
2
5
1
2
2
1

a Fragment number. (2) GenBank ID. (3) Sequence length (in nucleotides).
(4) Score of the leader structure. (5) Length of the leader structure (in amino
acids). (6) Number of exons in the leader structure.
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Table 4. Scores of Leader Structures"

(1)

(2)

(3)

(4)

(5)

(6)

2 3 4 5 6 7 8 9 10 11 12 >=13 Total

0 0 5 6 3 13 12 16 12 15 12 11 105

000032553325 28

0041096989 10 5 61

001502121301 16

2 16 11 820000000 39

a(l) Score (integer part). (2) Number of cases when the predicted leader had this score. (3)
Same, only cases with exact prediction. (4) Same, only cases with less than 50% over- or

underprediction. (5) Same, only cases with more than 50% over- or underprediction. (6) Same
for the sample of noncoding fragments.

4. DISCUSSION

The overall results demonstrated by the program are encouraging. It is possible to diagnose the noncoding
situation, and to make good predictions in most cases. The "gray area" of scores, where both coding and
noncoding sequences occur, is at the same time responsible for most major errors, and this area is rather
narrow. This means that by allowing the "no opinion" outcome we can avoid most errors of both under-
and overprediction type.

Performance of the program is at least comparable to that reported for other algorithms (Guigo et al,
1992; Snyder and Stormo, 1993; Xu et al, 1994). In particular, detailed comparison with the most recent
of the available versions of GRAIL (Xu et al, 1994) demonstrates that GREAT has lower specificity, but
higher sensitivity. GREAT makes more predictions that are exact and rarely misses more than half of the
coding region. On the other hand, the GREAT leader more often contains false positives, that is, regions not

coding in reality. They either form additional exons, or are adjacent to true exons, that is, have boundaries
shifted to the intron. It should be noted here that GREAT uses much fewer parameters than GRAIL.

In testing the approach we deliberately used the simplest splice recognition and coding potential func-
tions. These parameters have clear statistical sense, and it is not difficult to extend the prediction range to
other species using simple training procedures or just the published data. On the other hand, the use of
more sophisticated procedures can improve performance of the algorithm. In particular, it is possible to take
into account intron statistics and to apply coding potentials that account for the statistical inhomogeneity of
the human genome. Another possibility is to combine the above approach with similarity searches. It can

be done either in the standard way, considering results of similarity searches as one more parameter, or by
forcefully causing regions having strong similarity with protein-coding regions to participate in predicted
structures.

For technical reasons (insufficient speed and memory of the PC at our disposal) the testing was confined
to genes with not more than 6 exons. However, since preliminary analysis shows that application of the
program to incomplete genes produces roughly similar results, longer sequences can be analyzed even now
after partition into several fragments.

The main computational problem arising at implementation of the vector dynamic programming is
keeping the intermediate Pareto set of incomplete structures. The number of these structures still might
be exponential, although with a much smaller constant than if the complete search is performed (typically
the final Pareto set contains up to several thousand complete structures, whereas the total number of
complete structures can exceed millions). The size of the intermediate Pareto set can be decreased by linear
transformation of input parameters (Roytberg, 1994), preliminary filtering of exons, or transformation of
the main dynamic programming graph (Roytberg et al, 1996b).

One of the major advantages of the suggested approach is uncoupling of the time-consuming step of
Pareto set construction from the fast scoring step. Thus, Pareto sets constructed once can be used for
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experiments with various scoring schemes using suitable modified pattern recognition or neural network
techniques.

Finally, we have observed that in many cases the correct exons appear in all or almost all structures from
the top of the list. Thus some sort of "consensus of exons" might be used to delineate regions guaranteed
to code for proteins. Besides employing purely empirical approaches, it is possible to perform this kind
of analysis in a consistent way, making use of the dynamic programming duality between the search for
the optimal structure and the search for regions contained in most suboptimal structures (Finkelstein and
Roytberg, 1993; Stormo and Haussler, 1994; Roytberg et al, 1996a).
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