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I n t r o d u c t i o n  

Prediction of protein-coding regions is one of the most actual problems in computer genetics. These pre- 
dictions can be performed with reasonable accuracy for prokaryotic DNA, in which proteins are encoded 
by long uninterrupted open reading frames. However, the situation in eukaryotic case is much more diffi- 
cult. Non-coding introns, interrupting reading frames, are generally longer than coding fragments (exons) 
(Hawkins, 1988). Predictions in this case can employ two kinds of information. 

First, it is possible to devise a procedure for prediction of exon-intron boundaries (splicing sites; see 
(Gelfand, 1989) and references therein, reviewed in (Gelfand, 1992a, 1992c). The second approach is to 
measure statistical constraints imposed by the protein-coding function onto DNA sequence (reviewed in 
(Gelfand, 1990b, 1992c). Unfortunately, existing methods in both fields are not sufficiently reliable. Site- 
prediction algorithms either produce a lot of false positives, or miss true sites, while global functions do 
not map exon-intron boundaries with the required precision and tend to miss exons that are shorter then 
the width of the scanning window (the latter cannot be decreased due to the ever-present statistical noise). 

Some recently suggested algorithms combining both approaches produced rather hopeful results 
(Gelfand, 1990a, 1992d; Fields and Soderlund, 1990; Uberbacher and Mural, 1991; Legouis et al., 1991; 
Guigo et al., 1992; Rogozin, 1992). These algorithms predict the exon-intron structure as a whole, employ- 
ing variants of the following technique. First a site-prediction function is used with a very relaxed condi- 
tions on a putative site. The purpose of it is not to miss any true site, while false positives are allowed and 
will be dealt with on the next stage. Then all possible combinations of donor and acceptor sites defining 
variants of spliced mRNA (exon-intron structures) are considered and for each of them its coding potential 
(in the global sense described above) is evaluated. This value is summed with mean predicted strengths 
of donor and acceptor sites defining this structure (for compatibility all parameters can be measured in 
SD units) and the sum R serves as an estimate of the structure quality. Several mRNAs with highest R 
are translated and the resulting proteins are considered to be possibly encoded in the DNA region under 
consideration. 

From the user point of view the last feature is extremely important, since it allows prediction results to be 
immediately used for further analysis (protein homology searches, search for functional patterns, analysis 
of physical properties, secondary structure prediction, and, finally, prediction of function). Experiments, 
in which Berg and yon Hippel discrimination energy (Berg and yon Hippel, 1987) was used for prediction 
of sites and Fickett TestCode (Fickett, 1982) served as a coding potential, produced reasonable results 
(Gelfand, 1990a, 1992d). In most cases the true spliced mRNA was among the top 1-30 of mRNAs with 
high R, while the best variant (that with the highest R) always included more than half of the encoded 
protein. Moreover, the true structure either was the best among structures with the correct number of 
exons, or differed from the best one only slightly. 

However, this approach meets rather serious computational difficulties. The problem is that the number 
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of structures on the average exponentially depends on the number of putative sites. Thus either we have to 
consider only relatively short DNA sequences (Gelfandn 1990a, 1992d), or to impose too strict conditions 
on putative sites, thus risking to lose some true sites (Gelfand, 1990a, 1992d; Rogozin, 1992) or to employ 
various empirical techniques in order to avoid the full search (Guigo et al., 1992; Rogozin, 1992). 

Another possibility is to employ a dynamic programming technique and thus obtain a faster algorithm 
without loss of possible sites and good structures. In this paper we present such an algorithm in several 
modifications. First, the problem is stated formally and some main definitions are given. Then the algorithm 
searching for the best structure in each class (defined by the number of exons) is presented. Then its 
generalizations are described (search for k best structures and search for structures in c-neighborhood 
of the best one). Finally, we discuss relation of the present problem to the classical problem of dynamic 
programming. 

S t a t e m e n t  of  t h e  p r o b l e m  

Consider a nucleotide sequence in which putative donor and acceptor sites, as well as start  and stop 
codons, are marked. Each site is characterized by a positive number estimating its strength. It is assumed 
that  all true sites have strengths exceeding some threshold and that  the strength of a true site usually 
exceeds strengths of most false sites (but exclusions from this rule are allowed). In particular, the latter 
property does not allow the use of binary Yes/No site-prediction functions. 

Def in i t ion .  Left bracket is a translation start codon or an acceptor site. Right bracket is a translation stop 
codon or a donor site. 

R e m a r k .  We assume that brackets are situated between nucleotides (in half-integer positions p = 
1/2, 3 / 2 , . . .  ). 

De f in i t i on .  Reading frame f of a sequence fragment is determined by the codon position of the first 
nucleotide; f = 1, 2, 3. 

Def in i t ion .  Exon is a sequence fragment bounded by a left bracket and a right bracket to which a reading 
frame f is associated. Exon cannot contain in-frame stop codons. Each exon e is characterized by a positive 
number c(e) called coding potential and strengths of its acceptor and donor sites a(e) and d(e) respectively. 

Def in i t i on .  Initial exon is an exon whose left bracket is a start  codon. Terminal exon is an exon whose 
right bracket is a stop codon. Inner exon is an exon bounded by a donor site and an acceptor site. 

R e m a r k .  A pair of donor and acceptor sites can define 0 though 3 inner codons (in the first case all reading 
frames between the donor and acceptor sites are interrupted by stop codons, while in the last case none are). 

Def in i t ion .  Intron is a sequence fragment betweed a donor site and an acceptor site. 

Def in i t ion .  Structure is a sequence of non-overlapping exons ordered from left to right along a sequence 
with consistent reading frames, such that all exons, except maybe the first one and the last one, are inner 
exons. Each structure s = e l , . . .  , eN is characterized by the following parameters: 

N(s)  - -  number of exons; 

- -  = Z . = I  a ( e . ) ;  A(s) total strength of acceptor sites, A(s) N 
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D(s) - -  total strength of donor sites, D(s) = ~,=IN d(e,);  

L(s) - -  total exon length; 

C(s) - -  total coding potential of exons, C(s) = ~,=IN c(en); 
E(s) - -  position of the right bracket of the last exon. 

Def in i t ion .  A structure is initial if its first exon is initial. A structure is terminal if its last exon is terminal. 

Unless specified otherwise we consider only initial structures. 

Def in i t ion .  Target set 7" is a set of initial terminal structures such that  for any monotonically increasing 
function of mean site strengths and weighted mean coding potential of exons R(A/N, D/N~ C/L) (structure 
quality) and any fixed number of exons N* the set T contains the structure t with the maximum R among 
structures with the given number of exons N*: N( t )  = N ° and 

= max } R(A(s)/N(s),D(s)/N(s),C(s)/L(s)) .  R(A(t) /N(t) ,  D(t)/N(t) ,  C(t)/L(t)) { slN(s)=N" 

Construction of a target set is the objective of the algorithm. 

T h e  bas ic  a l g o r i t h m  

Consider the following domination conditions (p is the current left bracket position): 

T( r , s )  = C ( r )  > C( s )&L( r )  < L(s) 

&A(r)  > m(s)&D(r)  > D( s )&N( r )  < Y(s), 

NT( r ,  s) = T(r,  s) 

& L ( r ) = L ( s )  m o d 3  

& (E(s) < p =~ E(r)  < p) 

& (E(s) >__ p =~ E(r)  < E(s)).  

Def in i t ion .  Structure r dominates over structure s (denoted r~-s) if either r and s are terminal and T(r ,  s) 
holds, or r and s are non-terminal and NT(r ,  s) holds. 

L e m m a  1. If r~-s, then R(r) > R(s) for any structure quality R. 

P roof .  Obvious. 

L e m m a  2. The relation of domination is transitive, i.e. if r~-s and s~ t ,  then r~-t. 

P roo f .  Transitivity of condition (T) is trivial. If E(t)  < p, then (since s~-t) E(s) < p, and thus (since 
r>-s) E(r)  < p. If E( t )  > p and E(s) > p, then E(r)  < E(s) < E(t) .  Finally, if E(t)  > p, while E(s) < p, 
then (since s~-r) E(r)  < p also, and thus E(r)  < E(t) .  

Three structure sets are supported: the back set B and the front set Y: consist of non-terminal structures 
(the union jk4 = B U ~" is called base set), while 7" consists of terminal structures. At each step defined by 
the current position p these sets satisfy the following conditions: 

(i) if r, s E/3 U ~', then neither r~s ,  nor s~-r; 
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(ii) if s ~ B is non-terminM and E(s)  < p, then there exists r E B such that  r~-s; 
(iii) if s ~ 3 r is non-terminal, the last exon of s starts to the left of p and E(s)  < p (thus p is inside the 

last exon of s), then there exists r E ~" such that r~-s; 
(iv) if r, s E T,  then neither r~-s, nor s~-r; 
(v) i t s  ~ 7- is terminM and the last exon of s starts to the left of p, then there exists r E 7- such that r~-s. 
All sets are initialized as empty ones. The basic procedure of the algorithm is modification of a set S by 

a structure r. Denote the modified set by St. If for some s E S s~-r, then Sr = S. Otherwise r in included 
into the modified set, while all structures dominated by it are excluded. Formally, 

S, ifBs E S such that  s:,-r, 

S t =  { s E S i r ~ t s } U { r } ,  otherwise. 

Current position p is moved along the sequence from left to right. When a start  codon is encountered, the 
algorithm generates all initial exons corresponding to it, and each of them initializes a structure. When an 
acceptor site is encountered, all structures s with E(s)  < p are excluded from the front subset .T" and each 
of them modifies the back subset B. Then each exon corresponding to the current acceptor site is added to 
all structures from the back subset B that can be extended by this exon (recall that  the reading frame is 
incuded into the definition of an exon, and thus each acceptor site generally defines three classes of exons). 

In both cases (i.e. if the left bracket is a start codon or an acceptor site) exons are generated in the 
order defined by their right brackets from left to right. If the current exon is terminal, and thus all newly 
generated structures also are terminal, then these structures modify the target set 7-. If the current exon 
is non-terminal, then the generated structures modify the front subset .T. 

The process terminates when the current position reaches the end of the sequence. 

L e m m a  3. The set 7- constructed by the above procedure satisfies conditions (4) and (5) and is a target 
set. is a target set. 

R e m a r k  1. Condition (4) is not necessary, it just frees us from unnecessary elements. 

R e m a r k  2. Actually, the presented algorithm constructs a target set for any function R*(A, D, C, L, N) 
monotonically increasing on A, D, and C and decreasing on L and N. 

P r o o f .  Simply follows from Lemmas 1 and 2. 

E m b e l l i s h m e n t s  

In this section we briefly describe some modifications of the main algorithm. 

Search for k best structures 

If one desires to obtain not one, but k best structures in each exon class, it is sufficient to require existence 
of k dominating structures in the set modification procedure. 

Partially sequenced genes 

In order to account for the possibility of a partially sequenced gene, it is sufficient to introduce dummy 
left and right brackets at both ends of a DNA sequence in all three reading frames. 
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Restrictions on intron length 

can be of two kinds. Restriction on the minimum intron length lmi n is satisfied if the boundary between 
the back subset B and the front subset 9 e is set at the position p - / ra in  (where p is the current position). 
Restriction on the maximum intron length lmax is satisfied if we forcefully exclude from the back subset 13 
such structures r that  E(r)  +/max < P. 

Additional parameters and restrictions 

can be introduced into the general scheme in a similar manner. Thus it is possible to account for 
preferences between intron types (codon positions of the exon-intron boundary), exon types (exon length 
mod 3) and correlations between these characteristics for neighboring exons and/or  introns (Gelfand, 
1992b). Dependence of the splicing site signals from the intron type (Gelfand, 1992b) can be accounted for 
by independent prediction of all three types of splicing sites (both acceptor and donor) with the requirement 
that  types of sites defining an exon, its reading frame, and its type are consistent. 

The use of a priori parameters also is possible. In particular, rough estimates of protein length or 
molecular weight can be used, first, for excluding structures coding for too short (small) proteins from the 
target set, and second, for exclusion from the front subset ~" structures corresponding to too long or heavy 
proteins. Similar technique applies to a priori estimates on the number of exons, but in this situation one 
has to be vary careful, since our formal definition of an exon differs from the biological one (we consider 
only protein-coding exons, while experimental methods largely do not discriminate between coding and 
noncoding exons). 

Sea rch  for  s t r u c t u r e s  in t h e  e - n e i g h b o r h o o d  of  t he  bes t  one  

We fix now the structure quality function R(A/N, D/N, C/L). Denote R(s) - R(A(s)/N(s), D(s)/N(s), 
C(s)/L(s)) and let Rmax -- maxs R(s). In this section we present an algorithm that  constructs the set 
T~ = { t I R(t) > Rmax - ~ }. As before, only the case of fully sequenced genes is considered, although the 
algorithm can be easily modified in order to account for a possibility of partial sequencing. 

The procedure consists of two stages. At the first stage we construct the optimal structure as described 
above. However, for all acceptor sites we retain parameters A, D, N, C, L of all structures from the back 
subset 13 corresponding to the position p of this site (i.e. of such structures r E ,~A that  E(r)  < p). Let 
Rmax be the obtained maximum structure quality. 

Now re-initialize the target set T. At the second stage we consider right brackets in the right to left 
order. We redefine the front set ~'. It is now a set of non-initial terminal structures situated entirely to 
the right of the current right bracket position. For a given right bracket consider in the right to left order 
left brackets corresponding to exons (thus the reading frame has to be taken into account and no in-frame 
terminal codons should occur). The base set .h/[ consists now of the front subset .T and the remainder 
in which other terminal non-initial structures are placed; structures from T~ modify the subset .T when the 
current right bracket moves. 

Assume for clarity that  both brackets are sites (the case of an initial and/or  a terminal codons is simpler) 
and let e be the exon defined by the current acceptor and donor sites. Consider all structures s E ~ and 
compute qualities of all correct structures that  are concatenations of a structure from the back subset 
B corresponding to the current acceptor site, the current exon e, and s (it is not necessary to know the 
structures from 13 themselves, since their parameters, which have been retained at the first stage, are 
sufficient). Let R*(s) be the maximum of structure qualities associated with s. If R*(s) > Rmax - ~, then 
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add the current exon e to the structure s and place the obtained structure into the remainder subset T~. 
Otherwise consider the next structure from jr. Processing of the current exon completes after consideration 
of all s tructures from 5 r ,  while processing of the current right bracket completes after consideration of all 
exons corresponding to this right bracket. 

If  the current right bracket is a stop codon, it is not associated with a front subset and we consider 
terminal structures that  are concatenations of a structure from the back subset B and the current (terminal) 
exon. Similarly, if the current left bracket is a start  codon, there is no back subset associated with it, we 
consider initial terminal structures that  are concatenations of the current (initial) exon and a structure 
from the front subset Jr and the resulting structures are placed not into the remainder subset T~, but into 
the target  set 7". 

The desired set Tc of structures situated in the e-neighborhood of the optimal  one coincides with the 
target set 7" after processing of all right brackets. 

T h e  g e n e r a l  s t a t e m e n t  o f  t h e  p r o b l e m  in t h e  g r a p h  t h e o r y  l a n g u a g e  

Recall some definitions (for details see monograph (Aho et a1.,1976) and papers (Lengauer and Theune, 
1991; Finkelstein and Roytberg, this volume)). 

Let G = (V, E)  be an acyclic directed oriented graph (below only such graphs will be considered), h 
vertex v E V is called source if no arc enters it, and sink if no arc exits it. A path  start ing in a source is 
called initial, and an initial path ending in a sink is called full. 

Cost system on G is a quadruplet  S = (K, A, ®, -~), where 
K is some set (set of  weights); 
A is a function E -~ K ascribing to each arc its weight; 
® is an associative operation defining the weight of a path  p = ( e l , . . .  , en) given weights of the 

constituent arcs: 

,~(p) = (()t(ei) ® / \(e2)) . , .  ) ® ~(en); 
-~ is a relation of full ordering on N. 

In the simplest case K is the set ~ of real numbers, ® is addition, -g is the usual ordering. More 
complicated exaples of weigth systems are presented in (Lengauer and Theune, 1991; Finkelstein and 
Roytberg, this volume). For instance, it can be assumed that  K is an arbi trary set, a -~ b if It(a) -4 It(b), 
where/ t  : K --~/~ is some encoding function. 

E x a m p l e .  S e a r c h  fo r  t h e  o p i m a l  p a t h .  For a graph G = (V, E)  and a weight system S = (K, ~, ®, -~) 
find in G a full path  p0 of the minimal (with respect to the relation -<) weight, that  is such that  

,~(p0) = min{ ,~(p) I P is a full path  in G }. 

If  the operation ® is distibutive relative to minimum, i.e. if 

a -.< b :::;, a ® c .~ b ® c, ( . )  

then the problem is solved by the usual Bellman algorithm. This algorithm (more exactly, one of its 
numerous versions) consists of moving from the source to the sink, determining for each vertex v a minimal 
initial path coming to v. The condition (*) allows to retain for each vertex only one (minimal) path.  

In the exon-intron structure prediction problem one can consider as vertices of a graph G x  = (Vx ,  E x )  
the set Vx = {s} U X{t},  where X is the set of exons, s and t are special vertices (resp. source and sink). 

Let us be interested only in terminal structures and let no restrictions on intron length be considered. 
Then arcs from s come to all initial exons, arcs from all terminal exons come to t, and an arc comes from 
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xx = (al,  bx) to x2 = (a2, b2) if and only if bx < a2 (for simplicity we do not account for reading frames; 
the generalization for this case, as well as for other problems considered above, is fairly straighforward). 
The weigth of an arc e is completely defined by the exon which is entered by this arc. If an arc e enters an 
exon x, then let 

,~(e) = (A(z), D(x), C(x), L(x), 1). 

The composition operation ® is the component-wise addition. In particular, if p is a path, then the last 
component of the weight ,~(p) is the length N(p) of the path p. The relation -4 is determined by the quality 
function R(A/N, D/N, C/L). The problem of search for the minimal path for the described graph Gx 
with the weight system Sx is the search for the best structure among structures with arbitrary number of 
exons. Other considered problems also reduce to known problems of paths analysis in the graph Gx with 
the weight system Sx. 

Unfortunately there is no distributivity between the introduced operations @ and -<, since R is mono- 
tonically increasing in the components A, D, C and monotonically decreasing in L and N. Thus it is not 
possible to consider a single path for each vertex and we use the approach suggested in (Roytberg, 1992) 
(see also (Hirschberg, 1975; Avdoshin et hi., 1984). This appoach employs the notion of the base set of 
path, that  is, such a set M of initial paths, that  there exists a minimal full path extending one of the 
paths from 2vt. The algorithm constructs a sequence of base sets ,£41,. • • , A/I,~ until we obtain a base set 
in which it is simple to find the desired path, The set Mi+ l  is obtained from ./vii by adding new elements 
and deleting of unnecessary paths. 

Here is an example of an "unnecessity" condition for a path p: there exists p~ E M such that  for any 
extension r of the path p there exists an extension r '  of the path p' such that ,~(r') < ~(r). 

Conditions of this sort are called conditions of domination of p~ over r. Other conditions of unnecessity 
of a path p in the base set Ad are possible. For instance, in (Roytberg, 1992) one of the conditions of 
deleting a path p from the base set .44 is based on the connection between p and the history of Ad. In our 
algorithm, however, only the domination conditions (T) and (NT) are employed; 

The problem of path analysis in a non-distributive case was considered in (Lengauer and Theune, 1991), 
where a notion of a grouping function was introduced. Roughly speaking, the grouping function defines 
such subsets of the set K,  that  possess distributivity, and thus can be substituted for by a single "typical 
representative". In our case these are structures with coinciding number of exons N(s) and of similar length 
L(s). 

The above approach can be employed not only to the problem of the search for an optimal path, but 
to the more general problem of the statistical sum computation, (Finkestein and Roytberg, this volume). 
However, when applied to the optimal path problem, it does not allow to connect by the domination 
relation paths ending in different vertices (compare it with condition (NT)) .  

Finally, we point out three properties of the graph Gx and the weight system Sx that  are used in our 
algorithms. We need 

Def in i t ion .  An oriented graph G = (V, E) is called segmented if 
(i) V is a set of segments of a straight line; 
(ii) if there is an arc from [a, b] to [c, d], then b _< c. 

The properties employed by our algorithm are: 
(i) a weight A(e) is a vector, and the quality function is monotonic on each component; 
(ii) a weight ,k(e) depends only on the end vertex of the arc e; 
(iii) Gx is a segmented graph; 
Property (1) allows to formulate the domination conditions. Property (2) allows to compare (in terms 

of (NT))  paths ending in different vertices. Property (3) is used in the notion of the left boundary E(s) 
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and allows to simplify the checking of the domination condition (NT). 
On the other hand, mutatis mutandis our algorithm can be employed to non-segmented graphs. For an 

arbitrary graph the procedure of considering left brackets corresponds to looking over vertices in order of 
level (maximum length of a path from the source to this vertex) increase. When a vertex v is considered, 
the base set 2J is supplemented by paths of the type p- (End(p), v), where p E 2¢/. 

Condition E(r) = E(s) in (NT) corresponds to the condition that the sets of inheritors Next(r) and 
Next(s) of the terminal vertices End(r) and End(s) coincide. Condition (E(r) < p & E(s) < p) corresponds 
to the situation when Next(r) and Next(s) may differ, but their intersections with the set of not considered 
vertices coincide. 

Finally we formulate the condition on an arbitrary graph in order to be isomorphic to a segmented graph. 
For a arbitrary vertex v E V denote by More(v) the following set of vertices: 

More(v) = { w E V ] there exists a path from v to w }. 

L e m m a  4. If the set { More(v) ] v E V } is fully ordered by inclusion, then the graph G = (V, E) is 
isomorphic to a segmented graph. 

Proof.  Let { More(v) I v E V } consist of N elements 

M1 D Ms D ... D MN. 

Let M0 = V and for an arbitrary v E V let b, equal the maximum i such that v E V, and let e~ be defined 
by More(v) = Met. Obviously a path from v to w exists if and only if ev < bw, which proves the lemma. 

Conclusion 

The theoretical analysis of the computational effectivity of the suggested algorithm is difficult. Indeed, 
the number of generated structures is strongly dependent on the mutual arrangement of left and right 
brackets and their nature (consider trivial examples of sequences in which predicted donor and acceptor 
sites are arranged as follows: (dd.. .  daa.. ,  a), (dada... da) and (aa.. .  add.. ,  d)). However, the preliminary 
computer experiments with the draft version of the program implementing the algorithm demonstrate that 
it decreases the search by at least the order of magnitude. 

Moreover, as it has been already mentioned above, the constructed base set of structures contains an 
optimal structure for an arbitrary quality function satisfying the natural monotonicity conditions. Thus 
it is possible to to construct base sets for a large number of sequences and to use them as an input for 
a pattern recognition procedure, thus deriving the best structure quality function combining the diverse 
considered parameters. Although our situation is not the classical case for the pattern recognition theory 
(we do not require the universal threshold distinguishing correct and incorrect structures which would be 
impossible to derive, while for our purposes it would be sufficient if the correct structure would have the 
highest quality among structures generated by the same sequence), some modifications of the classical 
methods would work. In particular, in the class of linear quality functions it is possible to employ a simple 
modification of the generalized portrait approach (Alexandrov and Mironov, 1990). 
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