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A comparative analysis of some effective algorithms widely used in analysis, computation and comparison of chain 
molecules is presented. A notion of a stream in an oriented hypergraph is introduced, which generalizes a notion of a path 
in a graph. All considered algorithms looking over exponential sets of structures in polynomial time can be described as 
variants of a general algorithm of analysis of paths in graphs and of streams in oriented hypergraphs. 

I n t r o d u c t i o n  

Solution of some impor tant  problems of molecular biology (e.g. prediction of three-dimensional struc- 
tures of biopolymers from their pr imary structures and alignment of nucleotie and amino acid sequences) 
employs algorithms which can analyze a set of --~ e M structures by the time --~ M to , , -  M 3 .  We have in 
mind, first, matr ix  methods of the statistical physics of one-dimensional systems, which are used to deter- 
mine the properties of the thermodynamical ly  equilibrium state, and, second, the appara tus  of dynamic 
programming used to find out the state of the minimum "energy". These algorithms can be applied to sys- 
tems in which any arising bond divides the system into two independent parts.  It  is this independence that  
allows one to process an exponentially large set of structures in polynomial time (cf. Romanovskii,  1977). 

From the formal point of view, many of these algorithms cab be reduced to "summation" of paths 
in graphs. However, this scheme is not universal, since it does not include, for example,  algorithms for 
RNA secondary s tructure prediction (Nussinov et al., 1978; Zuker, 1989). Here we propose a new notion: 
"summation" of s t reams in directed hypergraphs.  This allows us to include all known to us algorithms of 
this kind into a single general scheme. 

Willing to make the paper  understandable to a general reader, we present both  the necessary mathemat-  
ical definitions and s ta tements  of biological problems together with sketches of algorithms tha t  solve them. 

1. D y n a m i c  p r o g r a m m i n g .  S e a r c h  fo r  t h e  o p t i m a l  a l i g n m e n t  o f  two  s e q u e n c e s  

The dynamic programming emerged as a general approach to optimization of multistage processes 
(Dreyfus, 1961; Angel and Bellman, 1972), e.g. in management  of economic systems. This method is used 
also for the numerical solution of variational problems, in particular, for search for stable configurations 
of physical fields. In molecular biology the method is used for the sequence homology search (Needleman 
and Wunsch, 1970) and for determination of energetically opt imal  structures of macromolecules. 

In the fundamental  Bellman s ta tement  (Angel and Bellman, 1972) the method of dynamic programming 
reduces to the following. 

A complete path consists of M - 1 steps (in time, space or another parameter  s temming from a particular 
problem). Let qi be a state before the i-th step (i = 1 ,2 , . . .  , M - 1) and let qi+l be a state after it (and, 
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respectively, before the next step if i < M - 1). The states qi form a finite set {qi}. Possible directions of 
the i-th step are determined by control vectors Yi from a set (Yi} so that 

qi+l = qi+l (qi, Yi), , i = 1 , . . .  , M - 1. (1) 

Each step produces a "profit" 

r i (q i ,  Yi) = ri , i+l (qi, q i+l (q i ,  Y i ) ) ,  

so that  the object function (total profit) on a path ql --* q2(ql, Yl) --~ qz(q2, Y2) . . . .  "--' qM(qM-1, YM-1) 
is 

M - 1  

?(ql, u l , . . . ,  yM-1) = r ( q l , . . .  , q , , )  = r , , , + l ( q , ,  (2)  
i = 1  

The problem is to find the maximum of this object function (the maximum profit) 

max ~M~-":ri,i+l(qi,qi+l)~. (3) 
q~,...,qM k i = 1  

as well as the optimalpath QOpt = (q~, q~ , . . . ,  q~t) that leads to this maximum, assuming condition (1) to 
be satisfied. 

In order to solve this problem, for each state of the system the following functions are introduced 

Ri(qi)= max I ~ l r j , j + l ( q j , q j + l ) } ,  
q i+ l , . . .  ,qM ~, j=i  

that  describe the maximum profit on paths coming from this state and satisfying transition rules (1). The 
functions R / c a n  be easily computed in the recurrent manner: 

RM(qM) = 0, for all qM, 

R i ( q i )  = m y { r i , i + l ( q i , q i + l ( Y i ) )  + R i + l ( q i + l ( Y i ) ) } ,  (i  = M -- 1 , . . . ,  1). (4) 

In course of these computations one determines also the optimal control v e c t o r s  y°pt(qi) corresponding to 
maxima in (4), and retains the optimal transitions q~Ptl (ql ) = qi+l (qi, yOpt) for all {qi }, i = M - 1, . . .  , 1. 
Now it is possible to find the maximum profit 

<b = max{Rl(ql)},  (5) 
qi 

opt the corresponding state ~i that is the beginning of the optimal path, and, finally, the entire optimal path 
QOpt : 

o p t (  I o p t / , t  ql l = q~pt,q~ = q2 ~,ql),... ,qM =q M t~M-t," (6) 

It should to noted that there can exist several optimal paths of equal value. The Bellman algorithm finds 
only one of them. It is sufficient for practical (engineering and economics) problems, but often insufficient 
for analysis of natural objects. Some elaboration of the statement of the problem and the algorithm 
(Waterman and Byers, 1984) allows one to find all optimal paths (as well as all "suboptimal" paths whose 
weights differ from the optimal one by a given value or less). 

The Bellman problem is often formulated in the graph theory language. Graph vertices (Fig. 1) corre- 
spond to states, and arcs correspond to control vectors. Each arc has a weight equal to the profit from 
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Fig. 1. An  acyclic or iented g r a p h  hav ing  one init ial  ver tex 
q0 into which  no  arcs  come.  Such a g r a p h  always can  be  
s t ra t i f ied  into levels  with  arcs coming  f rom vert ices of  lower 
levels to that  of h igher  levels. T h e  level of a ver tex  is 
d e t e r m i n e d  by the  m a x i m u m  n u m b e r  of arcs t h a t  should  
be  passed  before this  ver tex  is reached.  T h e  ver tex  of the 
level 0 is not entered by any  arc. Vertices of  the  level 1 are 
entered only  by arc~ from the ver tex  of the  level 0, vertices 
of  the level 2 are  en te red  by arcs  s t a r t i n g  in vert ices of 
level 1, and ,  possibly,  O, etc. Vertices not  ex i ted  by any  
arcs are underlined. They form the set {qend}. Here this 
set is formed by tlu'ee vertices q~, q~ and q~. 

V: ATGACG 

Ill\ I 
W: AAGTAGG 

Fig. 2. One  of possible  a l i gnmen t s  of  sequences  V and  W.  
Cor re spond ing  le t ters  are  connec ted  by lines. If the  m a t c h  
weight  equals  +1 ,  the  m i s m a t c h  weight  equals  - 1 ,  a n d  the 
gap  pena l ty  for any  le t te r  equals  - 3 ,  t hen  the  weight  of  
this  a l ignment  equals  4 • 1 + 1 • ( - 1 )  + 3 .  ( - 3 )  = - 6 .  

the corresponding control vector. The path weight is defined as a sum of weights of arcs forming it. The 
Bellman problem is to find the optimal (that is, having the maximum weight) path. 

The most direct application of dynamic programing in molecular biology occurs in construction of an 
optimal alignment of two sequences (Needleman and Wunsch, 1970; Sellers, 1974; Roytberg, 1984; Miller 
and Myers, 1988). 

Various formalizations of this problem differ from each other by the state sets, allowed transitions between 
the states and their weights. A comprehensive analysis of the dynamic programming method for sequence 
alignment can be found in the monograph by Waterman (1989). Here we formulate in the graph theory 
language only the first and the most simple problem by Needleman and Wunsch (1970). 

Consider two sequences V = al,a2, . . .  ,aN and W = ha,b2,... ,bM, where ai and bj are symbols from 
some alphabet. In particular, the alphabet of nucleic acids contains 4 letters (A, T, G, C), while the protein 
alphabet contains 20 letters (Ala, Gly, ... ). Alignment of the sequences V and W means the following: a 
symbol ail is set in correspondence with a symbol bjl, a symbol ai~ (i2 > il) corresponds to bj~ (J2 > Jl), 
etc. A "bond" between symbols a and b has a weight S(a, b). Letters not participating in the alignment 
are said to be deleted, deletion of a letter a is punished by a penalty D(a). The sum of bond weights and 
penalties is the weight of the alignment (Fig. 2). 

The problem is to find the optimal( that is, having the maximum weight) alignment (if there are several 
such alignments, then one of those suffices). 

When this problem is being solved by the dynamic programming approach, graph vertices correspond 
to pairs (i , j)  where 0 < i < N and 0 < j < M. Transitions from a vertex (i,j) to the vertices (i + 1,j), 
(i, j + 1) and (i + 1, j + 1) are possible (Fig. 3). The first transition corresponds to deletion of a symbol 
i + 1 in the sequence V, the second one to deletion of a symbol j + 1 in the sequence W. The transition 
(i, j)  ~ (i + 1, j + 1) corresponds to bonding of the symbols a~+l and bj+l. The initial state is the state 
(0, 0), the terminal state is the state (N, M) and alignments correspond to paths from (0, 0) to (N, M). 

In other algorithms graphs of a more complex structure are considered. In particular, if the bonding 
weight S(a,b) depends only on matching/mismatching of the symbols (Hirschberg, 1975; Myers, 1989; 
Roytberg, 1992), then it is sufficient to consider only such vertices (i,j), for which ai = bj. 
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Fig.  3. Vertices of the Needleman-Wunsch graph (dots) and the path corresponding to the alignment presented on Fig.  2. 
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Fig.  4. (A) One of possible arrangements of helices in a polypeptide chain consisting of 12 amino acids. (B) Ver- 
t ices of the graph describing ~he secondary structure (helical and coil regions) of a polypeptide chain and the path 
corresponding to the above arrangement of the secondary structure. In this example two states are possible for each 
unit: co i l  a n d  helix. @/(coil) ,-~ 0, @/(helix)  = .f(ai), where ai is an amino acid at the i-th position in the chain ,  
Ui (coil, coil) = Ui (coil,  hel ix)  = Ui (helix,  coil) = 0, while  Ui(hel ix ,  hel ix)  = e / / .  

2. Genera l i zed  m a t r i x  apparatus .  Stat i s t ica l  phys ics  o f  p o l y p e p t i d e s  and D N A  

The mathematical apparatus of the statistical mechanics of polymers (Birschtein and Ptitsyn, 1966; 
Flori, 1969) and, in particular, the theory of helix-coil transitions in polypeptides (Zimm and Bragg, 1959; 
Levis et al., 1970) and DNA (Vedenov et al., 1967) is largely based on a matrix formalism first introduced 
by Kramers and Wannier (1941) for computation of the one-dimensional h ing model (hing, 1925). The 
latter is the simplest chain of spins each of which can have two possible orientations and interacts only 
with the nearest neighbors and an external field. 

A general algorithm of statistical mechanics of chain molecules can be formulated as follows (Finkel- 
stein,1977): Consider a chain consisting of M units. The i-th unit can assume one of states {q/~, . . . ,  qN,} 
that constitute a set {qi}. The energy E(ql,... , qM) o f  a chain whose units assume the states ql , ---  , qM 

is determined by the formula 

M M 

E(ql,..., qM) = E c~i (qJ) + E Uj (qj_t, qj). (7) 
j = l  j = 2  

Here the terms • describe the internal energy of units and their interaction with an external field, while 
the terms U describe the energy of interaction of neighboring units (Fig. 4). 

The objective is to find the partition function of the chain 

z =  exp(-E(q , ,q,,)/kT), 
ql qM 



where k is the Bolzmann constant and T is the temperature, and, for each unit, the probability that  this 
unit is in a given state. 

There exists an algorithm for computation of the partition function Z without explicit combinatorial 
search over all chain conformations (their number is exponentially large!). Denote ¢1(ql) by Ul(ql) and 
denote the s u m  Ui(qi-1, qi) + t~i(qi) by ~]i(qi-1, qi) (i = 2, . . .  , M). Let further 

P1 (ql) = exp ( -  Lrl (ql)/kT); 

ri(qi-l,qi) = exp(-(Ji(qi-1, qi)/kT), i = 2 , . . . ,  M. 

Clearly, the statistical weight of one conformation is 

M 

j = 2  

while the partition function of the chain is 

M 

Z = E " "  E P,(ql) H rj(qJ-l'qJ)" (9) 
ql qM j = 2  

The values rj(qj-1, qj) form a transition malrix Ri of the size Ni-1 x PC/such that 

Ri(k,l) t k = r i ( q i _ l , q i  ).  

here Nj is the number of possible states of the j - th  unit. 
In order to find Z for all i = 2 , . . .  , M, one introduces in a recurrent manner vectors QM-1, . . .  , QI: 

QM is a vector of the length NM whose elements equal 1; 

O i - l = R i ' O i ,  i = M  . . . .  ,2 (10) 

Clearly, (9) can be represented as 

Z = P1 "Q1 (11) 

where P1 is a Nl-element vector (Pl(q~), . . . ,  PN1 (q~l)). 
This is the essence of the generalized Kramers-Wannier method. The time of computation by formulas 

(10) and (11) is of the order M N  2, where N is the average number of states of a unit. 
Using the vectors Q1,. . .  , QM, the vector P1 and additional recurrently computed vectors P2,. . .  , PM, 

where Pi = Pi-1 • Ri, it is possible to find the probability for a unit i (i = 1 , . . .  , M) to occupy a state q~: 

Wj(q;) = 1 / Z E . . .  E E " " E e x p (  - E ( q l ' ' ' "  'q ; '""  ,qN)/kT) 
ql q j - i  q j+l  qM 

= Pj(q;)Qj(q;)/Z. (12) 

Example: The problem of DNA hybridization 

Consider two single-stranded DNA sequences of lengths N and M and the set of base-pairing energies 
{eij }, determined by them, 1 < i < N, M > j > 1. 

In the simplest case, when interaction between nucleotides within each strand is ignored, the base- 
pairing energy a fragment i l , . . .  , it of the first strand and a fragment j l , . . .  ,jt of the second one (here 
1 _< il < . . .  < it < N and M _> j l  > . . .  > jt > 1 since strands pair in the antiparallel mode, Fig. 5) is 



M 

Fig. 5. Hybr id iza t ion  of two DNA s t rands .  Lines cor respond  to base-pa i r ing  (e.g., i : j ) .  

t 

E ( i l  . . . .  , i , ; j l  . . .  , j t )  = Z eik'Jk" 
k = l  

The search for the most "strong" pairing is similar to the search of the optimal alignment (Section 1). 
The main difference is that here we consider computation of the free energy of strand pairing. This value 
F = k T  • In Z (Z is the partition function of pairing) is the one that  can be measured experimentally. It 
takes into account not only the best pairing, but other, not so good but very numerous pairings as well. 

In order to solve the problem, we introduce Pij as a partition function of pairing of a fragment [1, i] of 
the first strand with a fragment [M, j] of the second strand. Assuming that  each pairing corresponds to 
one term of the sum (that is, neglecting logarithmic terms in the loop entropy (Flori, 1971)), the value 
Z = PN,1 can be found from the following recurrent relations." 

P0,M+I = Po,j = Pi,M+I = 1, 
M 

Pid = P i - l , j  + ~_,  P i - l , k + l  e x p ( - e i k / k T ) .  
k : j  

The computation time can be reduced at ,-, M times if one introduces P~,j as partition functions of such 
pairings of fragments [1, i] with [j, M], that the i-th base of the first strand is necessarily bound to some 
k-th base of the second strand, where M > k > j,  cf. (Roytberg, 1984). Then 

P0,M+I = Po,j = Pi,M + I = 1, 

P;,j  = P~,M + I = 0 

P~,j = P~,j+l + P i - l , j + l  e x p ( - e i j / k T ) ,  

Pi,j = Oi -x , j  + P~j .  

It is also possible to compute the pairing probability of bases / and j of the first and second strands 
respectively: 

Wij  = 1 / Z  . P l -1 , j+ l  • e x p ( - e i j / k T ) .  O i + l , j - 1 ,  (13) 

where the partition function Qi,j of pairing of fragments [i, N] of the first strand and [1, j] of the second 
strand also is found by recurrent formulas 

O N + I , O  = Q N + I , j  = Qi ,o  = 1, 

Q*N+I,j --- Q~,o = O, 

Q~,j = Q~,j-1 + Qi+l , j -1  e x p ( - c i j / k T ) ,  

Qi,i = Qi+l, j  + Q*~. (14) I , . 7  • 

with Q~,j being a partition function of such a pairing of fragments [i, N] and [1, j] that  the i-th base of the 
first strand is paired with some k-th base of the second one (j > k > 1). 



It is clear that  expression (13) corresponds to general formula (12), since Pi-l , j+l e x p ( - ¢ i j / k T )  is the 
total statistical weight of all those pairings of the fragment [1, i] of the first strand with the fragment [j, M] 
of the second one, where the nucleotides i and j are paired, while Qi+1,j-1 is the statistical weight of all 
pairings of the fragments [i + 1, N] and [1,j - 1] which follow this base-pairing i : j .  

3. A ge ne r a l  a l g o r i t h m .  Acycl ic  g r a p h s  over  semir ings  

Comparison of statements and solutions of the problems arising in the search for an optimal path (3) and 
the computation of the partition function of a chain molecule (9) demonstrates their close relationship. In 
both cases 

(i) the set of all possible paths from the initial state(s) into the terminal one is considered, each elementary 
transition between states is ascribed a weight, a path weight is determined by the weights of transitions 
forming this path, and the object function is determined by the path weights; 

(ii) the algorithm is based on the recursion from the terminal states to the initial ones. 
The differences are in the determination of the path weight by the weights of the constituent transitions, 

and in the definition of the object function by the total set of path weights. In the Bellman problem the 
path weight is the sum of transition weights, while the object function is the maximum of path weights. 
In the computation of the partition function, the weight of a path (a conformation of a molecule) is the 
product of transition weights, while the object function is the sum of path weights. 

These problems can be reduced to the computation of the "sum" of path weights in a graph: 

P r o b l e m  1 (Aho  e t  al.,  1976; A v d o s h i n  et  al.,  1984). Consider an acyclic directed graph G (Fig. 1) 
consisting of a non=empty vertex set {q} and arcs {(q, q')}, such that  each vertex belongs to at least one 
arc. One of vertices (q0) is initial and no arc enters it. A set 79 of paths consists of non-emt)ty sequences 
of arcs (q0, ql), (ql, q,2 ) , . - - ,  (qm-1, qm) such that each path starts at the initial vertex q0 and ends at a 
vertex that  is not exited by any arc. Each arc (q, q') is supplied by a weight r(q, q'). The path weight is 
defined as a "product" of weights of arcs forming this path: 

Y(P) = Y(qo ,q l , . . .  ,qm-1) ---- r(qo, ql) ® . . .  ® r(qm-l,qm). (15) 

The total weight of a set of paths is defined as a "stun" of the path weights: 

+ = @pY(qo,ql , . . .  ,qm-l ,qm).  (16) 

The objective is to compute this total weight. 

Here the arc weights r(q, q') are not necessarily numbers, and operations + and + are not necessarily 
multiplication and addition. It is required only that the weights belong to a set A that is a semiring with 
two composition laws ® and • and the unit (with respect to ®) element e (actually, the left unit suffices). 
It means that  

(i) the set A is closed with respect to ® and O: 

r G  r' E A, r Q r '  E A; 

(ii) the operation @ is associative and commutative: 

( r @ r ' ) @ r " =  r + ( r '  @r"), 

r ~) r ~ --: r' G r ; 



(iii) the operation ® is associative (not necessarily commutative) and A contains a unit element e with 
respect to it: 

(r ® r ')  ® r "  = r ® (r '  ® r " ) ,  

r®e  =- r; 

(iv) ® is distributive relative to @: 

r ® (r '  ¢ r")  = r ® r '  ¢ r ® r" ,  

(r '  ® r")  ® r = r '  ® r ¢ r"  ® r; 

(the above formulas hold for any r, r '  and r"  from A). 
If, in particular, @ is the arithmetical multiplication, we get formula (8) for computing of the statisticM 

weight of a path, while if @ is the arithmetical addition, we compute the total profit on this path and get (2). 
If the sign ~ denotes the arithmetical addition of path weights, we get formula (9) for computation of 

the partit ion function Z; if @ denotes max (choice of a maximum element), we compute the maximum 
profit and get formula (3). 

All properties (1-4) of the operations @ and ® are important.  Properties (1-3) are used in the statement 
of the problem itself. If, for example, @ is not commutative, formula (16) loses sense. Distributivity allows 
one to take into account all paths (the number of which is exponentially large!) in polynomial time. More 
details about graphs over semirings see in (Aho et al., 1976; Avdoshin et al., 1984). Note that  the presented 
statement of the problem is somewhat different from the one considered in (Aho et al., 1976). Since we 
consider only acyclic graphs G, we can soften restrictions imposed on the weights r. In particular, it is not 
required that  the weights are either all positive or all negative. 

Problem 1 is solved in a recurrent manner. For each vertex q not exited by any arc (these vertices form 
a set {qend}) a cost 

Q(q) = e 

is ascribed, where e is tile unit e l e n l e n t ,  r ®  e = r for any r ( that  is, e = 1 if ® is the arithmetical 
multiplication, and e = 0 if @ is addition). 

Then, going down by the levels, we compute path costs for each vertex q which is exited by arcs: 

Q(q) = G(q,q , )r(q ,  qt) ® Q(q,), 

where the sum is taken over all arcs (q, q') exiting from q. The process terminates when the value (I) = 
R(q0) is computed. 

~--]~Vge'lq°) conclude this section by stating in terms of semirings some problems from the physics of chain 
molecules. In all problems the graph G consists of vertices stratified into levels 0, 1, 2 , . . .  , M, where M is 
the number of units in a chain. Vertices belonging to a level i correspond to possible states of the i-th unit. 
Zero level contains a single vertex qo (beginning of the chain). Arcs connect only the vertices of adjacent 
levels. An arc y = (q ~ q') corresponds to a possible combination of a state q of one unit and a state q' 
of the adjacent one. The energy of this combination is denoted by c u. Energies e (with or without indices) 
are real numbers. 

1. Statistical mechanics of a chain at a finite temperature T (see Section 2) - -  computation of the partition 
function of all chain conformations 

A is the set of non-negative real numbers r (statistical weights, where r = exp(-¢/kT));  
y has the weight exp(-¢y/kT);  
e = l ;  



® is the arithmetical multiplication, x; 
• is the arithmetical addition, +. 

2. Statistical mechanics of a chain at the zero temperature T (Finkelstein and Reva, 1992) - -  computation 
of the minimum energy and the number of conformations with the minimum energy. 

A is the set of objects of the type {n, e} where s is the energy, n is a positive integer (number of paths, 
thus k In n equals the chain entropy); 

y has the weight {1,cy}; 
e = {0, 1}; 
N is defined by 

G is defined by 

® { . ' , e ' }  = 

[{n,d, e<e', 

t{n',e'}, 
since when two physical systems are combined, their energies are summed, while the numbers of stated are 
multiplied. 

3. Search for one structure with the minimum energy (see Section 1) - -  the dynamic programming 

A is the set of objects of the type {p, c}, where p is a path in a graph, e is the energy; 
y has the weight {pu, cu }, where py is a path consisting of a single arc y; 
e = {@, 0}, where 0 is a null path; 
® is defined by 

where Pl * P~ denotes concatenation of the path P2 to the path Pl. The operation ® is not commutative, 
since P2 should extend Pl; 

is defined by 

where 

{p , , e l }  • {p2, 2} = { p , = n ( e l , e 2 ) } ,  

Pl ,  C1 < e2, 

p =  -~min(pt,p2), el = e2, 
! 
[,P2, E1 > e2. 

The operation rain(p1, P2) means that  graph vertices are indexed at each level so that each path corresponds 
to the sequence of indices. For example (Fig. 1), the index (1, 1, 2) of the path q~ ---, q~ --~ q4 2 is smaller 
than the index (1,2) of the path q~ --* qa 2, which in turn is smaller than the index (1,3,2) of the path 
ql __~ q3 __+ q42. 

In algorithm implementations it is sufficient to retain only the first arc of a path going out of each vertex. 
The complete optimal path is reconstituted after an additional processing of the graph in the backwards 
direction. 
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.4. Search for all structures of the minimum energy (Waterman and Bayers, 1984) 

A is the set of objects of the type {P, ~}, where 7) is a set of states of a chain fragment (various paths 
between two vertices of the graph) all of which have the same energy e; 

e = {0, 0}, where 0 is a zero path; 
® is defined by 

{ P l , q }  ® {7)2,e2} = {7)1 * 7)2,q +c2} ,  

where 7)1 * 7)2 denotes the set obtained by all concatenations of paths from 7)1 and 7)2 (exactly in this order); 
® is defined by 

{7)1 ,e l  } e {7)2, g2 } : { 7), min(e,, e2)}, 

where 

7)1, C1 < C2, 

T ' =  7)1U7)2, q = ¢ 2 ,  

"iO2 gl > g2. 

In this problem it is also sufficient to retain for each vertex only a set of outgoing arcs. 
Problem 1 is closely related to the following problems: 

P r o b l e m  2A. In the conditions of Problem 1, find the total weight of all paths passing each vertex of the 
graph G. 

P r o b l e m  2B. In the conditions of Problem 1, find the total weight of all paths passing each arc of the 
graph G. 

These problems are solved as follows: 
1. Problem 1 is solved and all total weights Q(q') of paths coming out of a vertex q' are retained. 
2. The weights P(q) = r(qo,q')) are ascribed to the vertices of the first level. For higher levels, total 

weights P(q) of paths entering a vertex q are computed recursively: 

P(q) = ~(q,,,q)P(q") ® r(q", q), 

where the sum ~ is taken over all arcs (q", q) entering q. The total weight of paths passing q vertex q is 

P(q) ® Q(q), 

while the total weight of paths coming through an arc (q', q) is 

P(q) ® r(q, q') ® Q(q'). 

Problem 2A arises in the computation of the unit state probabilities (formulas (12) and (13)), while Problem 
2B is related to the search for an optimal path passing a given arc. 

4. P r e d i c t i o n  o f  t h e  R N A  s e c o n d a r y  s t r u c t u r e  

Prediction of the RNA secondary structure together with prediction of the protein structure, of the 
non-canonical structures in DNA, and comparison of primary structures of biopolymers is one of the most 
popular problems of the computational molecular biology. 

In this section we consider two algorithms pertaining to this problem: a classical algorithm for prediction 
of the lowest energy secondary structure of RNA (Nussinov et al., 1978; Zuker, 1989) and an algorithm for 
prediction of the thermodynamically equilibrium structure (McKaskill, 1990). 
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Fig. 6. Secondary s t ruc ture  of a single-stranded RNA. In 
the left s t ructure  (pairings a - b  and c - d ) ,  which is allowed 
by the considered model, knots  are absent .  In the right 
s t ructure  the addit ional pairings A - B and C - D lead 
to formation of knots.  Such s t ruc tures  are forbidden in the 
considered model. 

4.1. Prediction of the optimal RNA secondary structure. One more variant of the dynamic programming 

Currently many formal statements of the search for the optimal (that is, having the minimum energy) 
RNA structure are known. These statements differ in the choice of energy constants, accounting for loops, 
and the possibility of search for suboptimal structures. We consider only the simplest form of this problem 
(Zuker, 1989). This statement allows us, however, to illustrate the arising algorithmic problems. 

We represent a RNA primary structure as a sequence of symbols b l , . .  • , bg in the alphabet {A, C, G, U}. 
The secondary structure is formed by hydrogen bonds (pairing) between some bases of a single-stranded 
RNA. Each base can participate in at most one pairing. 

It is assumed that  knots are forbidden: if the i-th base is paired with the j - th  one (/ < j),  then the 
intermediate bases cannot pair with bases that  lie outside the fragment [i, j] (Fig. 6). This assumption is 
mainly algorithmic. It is not strictly motivated physically or biologically. In applications, prediction is often 
performed in two steps: first, unknotted structures are found, and then additional knot-forming pairings 
are considered. 

We assume that  each pairing is ascribed an energy dependent only on the paired bases. The total 
structure energy is the sum of the base-pairing energies. 

Formally, a secondary structure of a sequence P = Pl,---  , PN is a set of pairs S = {(il, j l ) , .  -. , (it, Jr)} 
such that  

(i) l < i k  < j k  < g (k = l, ..., t); 
(ii) if ( i , j )  E S and ( i ' , j ' )  E S, then either i' < i < j < j ' ,  or i < i' < j '  < j .  
Energy of a structure S is 

E(S) = ~ ¢(ik,jk), (17) 
k 

where the energies of base-pairing E(i~,jk) are assumed to be known. Given a sequence B, the objective is 
to find the secondary structure having the minimum energy possible for this sequence. 

The problem is solved by a recursion. Let B(i, j) be a fragment of B from the i-th to the j - th  symbol 
inclusively (in particular, B(1, N) = B), and let E(i , j )  be the minimum energy of secondary structures 
formed by this fragment. 

Energies of single-element fragments (i, i) are assumed to be zero, i.e. E(i, i) =_ O. Energies of fragments 
of the zero length E(i + 1, i) also equal 0 (they do not participate in the chain energy). 

The main recursive relation is 

E(i , j )  = min{E(i  + 1,j), min {E( i+  1,k - 1) + E(k + 1,j) +c ( i ,k )}} .  (18) 
iqk<j 

The first alternative corresponds to the situation when the i-th base (the first base of the fragment 
B(i , j ) )  is not paired, while in the second case the i-th base is paired with the k-th one, where i < k < j .  
In the last case the condition of non-knotting allows one to reduce the search for the optimal structure of 
B(i , j )  to independent search for optimal structures of B(i + 1, k - 1) and B(k + 1,j)  (Fig. 7). 

Search for the optimal structure on B reduces to the sequential search for optimal structures for all 
fragments of B. Energies of all fragments of length 0 and 1 equal 0. Then, using recursion (18), one finds 
the optimal structures for fragments of lengths 2, 3, 4, etc. until the entire B is processed. 
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Fig. 7. The structure B(i,j) contains pairings (i : k). In 
this case its energy equals to the sum of the pairing energy 
e(i, k) and energies of the boxed fragments. 

For each segment B(i, j) we retain the value E(i, j) and, retaining k, we remeember the term dominating 
in E(i, j) (if E(i, j) is dominated by the term E(i + 1, j), we assume k = i). This allows us to reconstitute 
by the back search the pairings forming the optimal structure, once the value E(1, N) has been found. 

Computation of each energy E(i, j) by recursion (18) requires a time proportional to IJ - i], while the 
entire problem, that is the computation of all E(i, j), requires the ,-, N 3 time. 

4.2. Statistical physics of RNA 

The recurrent formulas of the above section are analogous to the formulas of Section 1 used in the 
construction of the optimal alignment. The partition function for RNA secondary structures is computed 
by the formulas analogous to (18) (McCaskill, 1990) with the similar substitution of the minimization for 
the addition of energies of different chain conformations, and of the addition of pairing energies for the 
multiplication of their exponents. 

Let Qi,j be the partition function of a fragment [i, j]. Then 

Qi,j = Qi+l,j + E Q i + l , k + l - e x p ( - ¢ i k / k T ) - Q k + l , j  
i<k~_j 

(here Qi,i = Qi, i - t  = 1). Computation of the objective value Z = Q1,N is performed by induction over a 
length increase of a fragment [i, j]. 

Back recurrence allows one to determine the probabilities of all base-pairs in the thermodynamically 
equilibrium state of RNA: 

W i , j  : 1/Z • Q i - I , j + I  • e x p ( - ¢ i j  / k T )  • Q i + I , j - I ,  

where Pi,j is the partition function of interaction of a fragment [1, i] with a fragment [j, N] (1 _< i < j _< N). 
Pi,j are computed recurrently by decrease of the distance between i and j (eft (13) and (14) in Section 2): 

PO,N -~ P1,N+I = Ol,1 = Q0,0 = 1, 

Pi,j = Pi-l,j + E Pi-l,k+l " exp(-cik/kT). Qj,k-1 
j < k < g  

+ E Qk+l,i-x "exp(-eik/kT)" Pk-x,j, 
l<k<i  

( h e r e l  < i < j < N ) .  

5. D y n a m i c  p r o g r a m m i n g  on  d i r e c t e d  h y p e r g r a p h s :  Sta tement  of  the  problem 

The above algorithm for prediction of RNA secondary structure is traditionally considered to be a 
dynamic programming algorithm. However, this algorithm cannot be reduced to the Bellmann scheme or 
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Fig. 8. Graph i c  r ep r e sen t a t i on  of  hypera rcs  wi th  the  an  initial ver tex  q a n d  a set of  t e rmina l  vertices q l , .  • • , qN. T h e  order  
of  t e rmina l  vert ices  is i m p o r t a n t :  hypera rcs  (B) a n d  (C) are different (since the  order  of  t e rmina l  vert ices ql and  q2 is 
different) .  A m o n g  the  t e rmi na l  vert ices of  a hyperaxc  there  can  be coinciding ones (D). 

(a) 
t o 

(b) 

Fig. 9. A s t r e a m  on the  set  of  vert ices {q, al,  bl, a2, b2 ). It  is 

fo rmed  by hypera rcs  to = ( q , { a l , b l } ) ,  tl = (a l , {a2 ,b2})  

a n d  t2 = (bl ,  {b2}).  Two poss ible  r ep re sen ta t ions  of  this  

s t r e a m  as a tree are presented .  (A) Tree nodes  cor respond  
to hypera rcs ,  while vertices of  the  given D H - g r a p h  are 
no t  shown  explicitly. (B) A more  e x t e n d e d  rep resen ta t ion  
which would be  p r e d o m i n a n t l y  used  below: tree nodes  cor- 
r e spond  to vert ices of the  given DH-g raph ,  hype ra rc s  (tree 
nodes  in (A)) are  encircled. Note t ha t  a ver tex of the  
D H - g r a p h  can  appea r  in several  different tree nodes  (here 
it is b2, cf. Fig. 8B).  

the summation of paths in a graph described in Section 3: successor of a state (here states are fragments 
of the given RNA molecule) is not a single new state, but two states, namely, a pair of fragments obtained 
after splitting of the initial fragment by a new pairing. 

In order to describe such situations, we introduce the notion of a directed hypergraph (DH-graph). It is a 
finite set of vertices (corresponding, as above, to states of subsystems), and a set of hyperarcs connecting 
these vertices. A hyperarc t = (q, V) sets in correspondence an initial vertex q and a non-empty set of 
terminal vertices V = {q l , . . .  } (some of the states qi can coincide, see Fig. 8). The  vertices which are not 
initial for any arc are called the dead-end vertices. 

A stream in a DH-graph is an analog of a path in an ordinary directed graph. These arcs form a path 
in a directed graph when the terminal vertex of an arc (q0, ql) coincides with the initial vertex of an arc 
(ql, q2). Analogously, if the terminal vertices of a hyperarc to = (q, {q l , . . .  , qn}) coincide with the initial 
vertices of hyperarcs tl  = (ql, {q~,. . .  ,qlm 1}), . . . ,  tn = (qn, {q~,-. .  ,q,~,}), all these hyperarcs form a 
stream, t0 being the root arc of this stream (Fig. 9). 

Like the paths in the models described in Sections 1-3, a stream describes one of the possible states 
of a system consisting of subsystems. When the RNA secondary structure is considered (Fig. 10), such 
subsystems are the separate chain fragments. They correspond to DH-graph vertices, while hyperarcs of 
this graph correspond to the different pairings of the first base of each fragment, or to the absence of any 
pairing. 

In Section 3 path weight was introduced as a "product" of arc weights and the computation of the "sum" 
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Fig. 10. One of possible configurations of a 14-unit RNA (A). Circles denote nucleotides. Configuration (A) contains 5 
base-pairings: 2 : 13, 3 : 7, 4 : 6, 8 : 11, 9 : 10. A stream (B), corresponding to this configuration contains 6 hyperaxcs 
to, h . . . .  , ts. Vertices of the DH-graph are fragments of the chain. Fragments of a length 2 or more are circled, fragments 
of length 1 axe boxed, fragments of length 0 are set in triangles. Fragments of lengths 0 and 1, and only such fragments, 
are the dead-end vertices of the DH-graph. The initial vertex of the arc to corresponds to the entire chain 1-14. The first 
nucleotide is not paired, and thus to has only one terminal vertex: the fragment 2-14. Other hyperarcs correspond to 
base-pairings and have two terminal vertices each. The number at the "fork" of a hyperarc is the number of the nucleotides 
paired with the first nucleotide of the corresponding fragment. Thus, the arc tl corresponds to the base-pairing 2 : 13 in 
the fragment 2-14. After that two fragments are left, namely, 3-12 and 14-14. The vertex 14-14 is dead-end, since further 
pairing in a fragment of length 1 (as well as of length 0, e.g. 10-9) is impossible. 

of pa th  weights was considered. Similarly, we define stream weights as products  of the hyperarc  weights 
and compute  the sum of weights of all s t reams.  

We tu rn  now to formal definitions. 

D e f i n i t i o n  1. An oriented hypergraph (DH-graph)  G is a triple (V, q0, E)  where V is a non - e mp t y  finite 
set of vertices, q0 is the initial vertex, E is a finite set of hyperarcs on G. 

In order to define formally a s t ream in a DH-graph,  we need the not ion  of tree (Aho et ah, 1976). Recall, 
tha t  a tree is a directed acyclic graph in which (a) there is a single vertex (root) with no enter ing  arcs, and 

(b) for any vertex there exists exactly one path  to it from the root. 
In order to avoid misunders tand ing ,  we use below a te rm node for tree vertices. Nodes with no exit ing 

arcs are called leaves. 

D e f i n i t i o n  2. A s t ream in a DH-graph G = (V, q0, E)  is a tree such tha t  
(i) each node of the tree corresponds to a vertex q E V, where one vertex can correspond to several 

different nodes; 

(ii) a set of arcs coming from node a which is not  a leave corresponds to a hyperarc t(c 0 E E, so tha t  
the ini t ia l  vertex of t is the vertex q(a)  corresponding to the node a,  while the t e rmina l  vertices of t are 
the vertices corresponding to the nodes into which the arcs from a go. 

Examples  of s t reams are presented on Fig. 9, 10 and l l .  

Now we need only to define the weights of the streams. Let G = (V, q0, E)  be a DH-graph and  let each 
hyperarc  t 6 E be ascribed its weight r( t ) ,  which is an element  of a semir ing A. The  weight R(T)  of a 
s t ream T is defined in a recurrent  manner .  
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Fig. 11. (A) A DH-graph with 5 vertices and 6 hyperarcs. The vertex a is initial, the boxed vertices d and e are terminal. 
(B) Hyperares and their weights (real numbers). (C) All full s t reams  in the  DH-graph. Weights of hyperarcs are circled. 
Below each stream its weights relative to two semirings are presented: (x ,  +): ® and (9 are multiplication and addition of  
real numbers respectively, (+,min):  (9 and (9 are addition and minimum, respectively. Below the brace the weight of  the  
entire DH-graph relative to these  semirings is given. 

D e f i n i t i o n  3. 
(i) If a stream T consists of  a single node c~ (i.e. if no arcs go from the root of  T), then the weight R(T) 

is assumed to be equal to the unit e of the semiring A. 
(ii) If N > 1 arcs (corresponding to the hyperarc t (a ) )  go from the root a of  a stream T, then 

R(T) = r(t((~)) (9 R(T1) ®. . .  ® R(TN). 

Here T1, . . .  ,TN are substreams of the stream T coming out of the terminal vertices of tile hyperarc t(ct); 
they are "multiplied" in the order of the terminal vertices of l((~). 

D e f i n i t i o n  4. A stream is called termi,al if all its leaves correspond to the dead-line vertices of  a DH-graph. 
A terminal stream is called full if its root corresponds to the initial vertex q0 of  the DH-graph (V, q0, E).  
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Def in i t ion  5. Weight of a DH-graph G = (V, q0, E) whose hyperarcs have the weights from a semiring A 
is the sum (in the sense of A) of the weights of all its full streams. 

Def in i t ion  6. A DH-graph is called acyclic if it contains no streams in which the vertex corresponding to 
the stream root corresponds also to some other node of it. 

Clearly a finite acyclic DH-graph contains only a finite number of streams. 
Now we can formulate the problem of "dynamic programming" on DH-graphs. 

P r o b l e m  3. Consider a finite acyclic DH-graph G = (V, q0, E), each hyperarc t E E of which has a weight 
t(e), which is an element of a semiring A. The objective is to find the weight of the DH-graph G. 

In particular, the algorithms for computation of RNA secondary structure considered in Section 4 follow 
this scheme. In this case (Fig. 10): 

(i) vertices of the DH-graph are fragments [i, j]; 
(ii) hyperarcs are transitions from a fragment [i, j] to the fragment [i + 1, j] and to a pair of fragments 

[i, k - 1] and [k + 1, j]; 
(iii) arc weights are: the energies of pairings ¢ik (with vii - 0) when the minimum energy is com- 

puted, the statistical weights rik = exp ( -¢ i k / kT)  when the partition function is computed, and the pairs 
(pairing i : k, elk) when the structure of the minimum energy is searched for (see Problem 3A in Section 4). 

(iv) semirings are: (@ is arithmetical addition, ~ is the minimum) when the minimum energy is computed, 
and (® is arithmetical multiplication, G is arithmetical addition) when the partition function is computed. 
Operations employed in the search for the minimum energy structure(s) are described in Problems 3 and 
Section 3. 

Solution of Problem 3 

Define the weight of a vertex q E V as a sum Q(q) of all terminal streams with the initial vertex q. 
Similarly to the algorithm of Section 3, we compute the values Q(q) in the recurrent manner, going from 
terminal vertices to the initial ones. 

If q is a dead-end vertex, that  is, if it has no exiting hyperarcs, then Q(q) = e (that is the unit of the 
semiring A). 

Let now q be a non-terminal vertex, and let tl = (q, {q~,... ,qlN1}),. . . ,  ts = (q, {q~,.. .  ,q~,}) be all 
hyperarcs coming out of q. Then 

i Q(q) = ®t,r(ti) ® Q(q~) ® .. @ Q(qN,), (19) 

where the sum is taken over all hyperarcs t l , . . .  , ts, R(q~) is the weight of the vertex entered by the j - th  
end of the i-th hyperarc. 

In order to prove formula (19), consider an arbitrary hyperarc t = (q, {qx, . . .  , qN}). Denote by pt the 
sum (in the sense of the semiring A) of weights of all trees whose roots correspond to the hyperarc t. Let 
{T], Tj2,... } be all terminal streams with the initial state qj. Then 

Clearly, 

Q(q) = Otp,. (20) 

 (qj) = 

where ij spans all terminal streams with the initial state qj. On the other hand, 
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p, = ..... e . . . e  

= , . ( t ) ®  ® . . . ®  ( ¢ , , R  

= r(t) ® Q(ql) ® " "  ® Q(qN). (21) 

Equations (20) and (21) prove equation (19), which provides the desired recurrent algorithm. Clearly its 
working time is proportional to the total number of terminal vertices in all hyperarcs of the DH-graph G. 

Similarly to Problems 2A and 2B, one can state the following problems: 

P r o b l e m  4A.  In the conditions of Problem 3 find the total weight of all streams passing each vertex of 
the DH-graph G. 

P r o b l e m  4B.  In the conditions of Problem 3 find the total weight of all streams passing each hyperarc of 
the DH-graph G. 

Here a sentence "a stream passes a vertex q" means that  one of its nodes corresponds to the vertex q, 
while a sentence "a stream passes a hyperarc t" means that  t corresponds to the arcs exiting from some 
node of the stream. 

Unlike Problems 2A and 2B, these problems can be solved effectively only with additional restrictions. 

D e f i n i t i o n  7. A DH-graph is called strongly acyclic if it does not contain any stream T such that  two of 
its nodes correspond to one and the same vertex q. 

Note that  the acyclicity condition forbids only the second use of the vertex corresponding to the root of 
the stream, while two branches can include the same vertex. 

Algorithms analogous to algorithms of Section 3 solve Problems 4A and 4B if 
(i) the DH-graph is strongly acyclic; 
(ii) the multiplication ® is commutative. 
In order to describe these algorithms, we introduce some new notions. Let q be a vertex of G. A stream 

T in G is called q-stream if one of its leaves corresponds to the vertex q, while all other leaves correspond 
to dead-end vertices. The sum of weights of all q-streams is denoted by P(q).  

From conditions (1) and (2) it follows that  the sum of weights of all paths passing a vertex q equals 

P(q).  R(q), 

while the sum of weights of all paths passing an arc t = (q, {q l , . . .  , qn}) equals 

P(q) . r(t) . ®~=lR(qj). 

The values P(q) are computed in the recurrent manner, moving from the vertex q0 to vertices of higher 
levels (here the level of a vertex is the maximum path length from the root of a full s tream to the node 
marked by the vertex q). The recursion looks as follows. Let t l , . . .  ,ts be all hyperarcs for which q is a 
terminal vertex, and for an arbitrary j = 1 , . . .  ,s let qj be the initial vertex o f t j ,  and {q~} be the set of 
terminal vertices (one of them is the vertex q). Then 

P(q) = @j r(tj ). P(qj ). ®q~.Tlq R(q~. ). 

Conclusion 

The model of streams in DH-graphs allows us to describe all known algorithms that are usually considered 
to be "based on the dynamic programming method".  This model is applicable in computation of all 
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structures that can be described as a set of bonds each of which divides a structure into several independent 
parts. If the condition of "independence of parts" is not satisfied (e.g. when knotted structures occur in 
RNA), it is useful to solve a simplified problem with a forcefully introduced independence condition, and 
then to solve the general problem using search algorithms. 

The formulation of the problems in terms of semirings allowed us, given an algorithm searching for the 
energy minimum, to construct a dual algorithm of the computation of the partition function of the same 
system (Sections 4.1, 4.2 and 6), and vice versa. This analogy seems to be rather promising. 

On the other hand, there is an important difference between the analysis of oriented hypergraphs and 
ordinary oriented graphs: DH-graphs are in general irreversible, i.e. hyperarcs, unlike ordinary arcs, cannot 
be reversed. Backtracking in Problems 4A and 4B, unlike Problems 2A and 2B, is possible only in specific 
cases. Problem 3, that is solved by algorithms not requiring backtracking, can be solved in the general 
case, similarly to Problem 1. 

Finally, we note the existence of a large class of problems not satisfying the described scheme, but closely 
related to it. These are the problems where the operations ® (computation of path (stream) weights by 
the (hyper)arc weights), and ~ (computation of the object function by the path (stream) weights) do not 
satisfy the semiring axioms (Section 3), in particular, the distributivity condition (Lengauer and Theune, 
1991). Such a "non-distributive" problem arises, for instance, in the problem of prediction of the exon- 
intron structure in higher eukaryote genomes (Gelfand and Roytberg, this volume). In the cited papers 
some approaches to the non-distributive problems on graphs are suggested. It would be interesting to 
extend these approaches to the analysis of streams in oriented hypergraphs. 
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