
BioSystcms, 30 (1993) 1-19 1
Elsevier Scientific Publishers Ireland, Ltd.

Computation of biopolymers:
A general approach to different problems

A. V. F inke l s t e in a and M. A. R o y t b e r g b

alnstitute of Protein Research, Russian Academy of Sciences, Pushehino, Moscow region, 152292, Russia and
blnstitute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region, 14229~, Russia

A comparative analysis of some effective algorithms widely used in analysis, computation and comparison of chain
molecules is presented. A notion of a stream in an oriented hypergraph is introduced, which generalizes a notion of a path
in a graph. All considered algorithms looking over exponential sets of structures in polynomial time can be described as
variants of a general algorithm of analysis of paths in graphs and of streams in oriented hypergraphs.

I n t r o d u c t i o n

Solution of some impor tant problems of molecular biology (e.g. prediction of three-dimensional struc-
tures of biopolymers from their pr imary structures and alignment of nucleotie and amino acid sequences)
employs algorithms which can analyze a set of --~ e M structures by the time --~ M to , , - M 3 . We have in
mind, first, matr ix methods of the statistical physics of one-dimensional systems, which are used to deter-
mine the properties of the thermodynamical ly equilibrium state, and, second, the appara tus of dynamic
programming used to find out the state of the minimum "energy". These algorithms can be applied to sys-
tems in which any arising bond divides the system into two independent parts. It is this independence that
allows one to process an exponentially large set of structures in polynomial time (cf. Romanovskii, 1977).

From the formal point of view, many of these algorithms cab be reduced to "summation" of paths
in graphs. However, this scheme is not universal, since it does not include, for example, algorithms for
RNA secondary s tructure prediction (Nussinov et al., 1978; Zuker, 1989). Here we propose a new notion:
"summation" of s t reams in directed hypergraphs. This allows us to include all known to us algorithms of
this kind into a single general scheme.

Willing to make the paper understandable to a general reader, we present both the necessary mathemat-
ical definitions and s ta tements of biological problems together with sketches of algorithms tha t solve them.

1. D y n a m i c p r o g r a m m i n g . S e a r c h fo r t h e o p t i m a l a l i g n m e n t o f two s e q u e n c e s

The dynamic programming emerged as a general approach to optimization of multistage processes
(Dreyfus, 1961; Angel and Bellman, 1972), e.g. in management of economic systems. This method is used
also for the numerical solution of variational problems, in particular, for search for stable configurations
of physical fields. In molecular biology the method is used for the sequence homology search (Needleman
and Wunsch, 1970) and for determination of energetically opt imal structures of macromolecules.

In the fundamental Bellman s ta tement (Angel and Bellman, 1972) the method of dynamic programming
reduces to the following.

A complete path consists of M - 1 steps (in time, space or another parameter s temming from a particular
problem). Let qi be a state before the i-th step (i = 1 ,2 , . . . , M - 1) and let qi+l be a state after it (and,

0303-2647/93/$ 06.00 (~ 1993 Elsevier Scientific Publishers Ireland, Ltd.
Printed and Published in Ireland

respectively, before the next step if i < M - 1). The states qi form a finite set {qi}. Possible directions of
the i-th step are determined by control vectors Yi from a set (Yi} so that

qi+l = qi+l (qi, Yi), , i = 1 , . . . , M - 1. (1)

Each step produces a "profit"

r i (q i , Yi) = ri , i+l (qi, q i+l (q i , Y i)) ,

so that the object function (total profit) on a path ql --* q2(ql, Yl) --~ qz(q2, Y2) "--' qM(qM-1, YM-1)
is

M - 1

?(ql, u l , . . . , yM-1) = r (q l , . . . , q , ,) = r , , , + l (q , , (2)
i = 1

The problem is to find the maximum of this object function (the maximum profit)

max ~M~-":ri,i+l(qi,qi+l)~. (3)
q~,...,qM k i = 1

as well as the optimalpath QOpt = (q~, q~ , . . . , q~t) that leads to this maximum, assuming condition (1) to
be satisfied.

In order to solve this problem, for each state of the system the following functions are introduced

Ri(qi)= max I ~ l r j , j + l (q j , q j + l) } ,
q i+ l , . . . ,qM ~, j=i

that describe the maximum profit on paths coming from this state and satisfying transition rules (1). The
functions R / c a n be easily computed in the recurrent manner:

RM(qM) = 0, for all qM,

R i (q i) = m y { r i , i + l (q i , q i + l (Y i)) + R i + l (q i + l (Y i)) } , (i = M -- 1 , . . . , 1). (4)

In course of these computations one determines also the optimal control v e c t o r s y°pt(qi) corresponding to
maxima in (4), and retains the optimal transitions q~Ptl (ql) = qi+l (qi, yOpt) for all {qi }, i = M - 1, . . . , 1.
Now it is possible to find the maximum profit

<b = max{Rl(ql)}, (5)
qi

opt the corresponding state ~i that is the beginning of the optimal path, and, finally, the entire optimal path
QOpt :

o p t (I o p t / , t ql l = q~pt,q~ = q2 ~,ql),... ,qM =q M t~M-t," (6)

It should to noted that there can exist several optimal paths of equal value. The Bellman algorithm finds
only one of them. It is sufficient for practical (engineering and economics) problems, but often insufficient
for analysis of natural objects. Some elaboration of the statement of the problem and the algorithm
(Waterman and Byers, 1984) allows one to find all optimal paths (as well as all "suboptimal" paths whose
weights differ from the optimal one by a given value or less).

The Bellman problem is often formulated in the graph theory language. Graph vertices (Fig. 1) corre-
spond to states, and arcs correspond to control vectors. Each arc has a weight equal to the profit from

//
/

qO'~

ql

Fig. 1. An acyclic or iented g r a p h hav ing one init ial ver tex
q0 into which no arcs come. Such a g r a p h always can be
s t ra t i f ied into levels with arcs coming f rom vert ices of lower
levels to that of h igher levels. T h e level of a ver tex is
d e t e r m i n e d by the m a x i m u m n u m b e r of arcs t h a t should
be passed before this ver tex is reached. T h e ver tex of the
level 0 is not entered by any arc. Vertices of the level 1 are
entered only by arc~ from the ver tex of the level 0, vertices
of the level 2 are en te red by arcs s t a r t i n g in vert ices of
level 1, and , possibly, O, etc. Vertices not ex i ted by any
arcs are underlined. They form the set {qend}. Here this
set is formed by tlu'ee vertices q~, q~ and q~.

V: ATGACG

Ill\ I
W: AAGTAGG

Fig. 2. One of possible a l i gnmen t s of sequences V and W.
Cor re spond ing le t ters are connec ted by lines. If the m a t c h
weight equals +1 , the m i s m a t c h weight equals - 1 , a n d the
gap pena l ty for any le t te r equals - 3 , t hen the weight of
this a l ignment equals 4 • 1 + 1 • (- 1) + 3 . (- 3) = - 6 .

the corresponding control vector. The path weight is defined as a sum of weights of arcs forming it. The
Bellman problem is to find the optimal (that is, having the maximum weight) path.

The most direct application of dynamic programing in molecular biology occurs in construction of an
optimal alignment of two sequences (Needleman and Wunsch, 1970; Sellers, 1974; Roytberg, 1984; Miller
and Myers, 1988).

Various formalizations of this problem differ from each other by the state sets, allowed transitions between
the states and their weights. A comprehensive analysis of the dynamic programming method for sequence
alignment can be found in the monograph by Waterman (1989). Here we formulate in the graph theory
language only the first and the most simple problem by Needleman and Wunsch (1970).

Consider two sequences V = al,a2, . . . ,aN and W = ha,b2,... ,bM, where ai and bj are symbols from
some alphabet. In particular, the alphabet of nucleic acids contains 4 letters (A, T, G, C), while the protein
alphabet contains 20 letters (Ala, Gly, ...). Alignment of the sequences V and W means the following: a
symbol ail is set in correspondence with a symbol bjl, a symbol ai~ (i2 > il) corresponds to bj~ (J2 > Jl),
etc. A "bond" between symbols a and b has a weight S(a, b). Letters not participating in the alignment
are said to be deleted, deletion of a letter a is punished by a penalty D(a). The sum of bond weights and
penalties is the weight of the alignment (Fig. 2).

The problem is to find the optimal(that is, having the maximum weight) alignment (if there are several
such alignments, then one of those suffices).

When this problem is being solved by the dynamic programming approach, graph vertices correspond
to pairs (i , j) where 0 < i < N and 0 < j < M. Transitions from a vertex (i,j) to the vertices (i + 1,j),
(i, j + 1) and (i + 1, j + 1) are possible (Fig. 3). The first transition corresponds to deletion of a symbol
i + 1 in the sequence V, the second one to deletion of a symbol j + 1 in the sequence W. The transition
(i, j) ~ (i + 1, j + 1) corresponds to bonding of the symbols a~+l and bj+l. The initial state is the state
(0, 0), the terminal state is the state (N, M) and alignments correspond to paths from (0, 0) to (N, M).

In other algorithms graphs of a more complex structure are considered. In particular, if the bonding
weight S(a,b) depends only on matching/mismatching of the symbols (Hirschberg, 1975; Myers, 1989;
Roytberg, 1992), then it is sufficient to consider only such vertices (i,j), for which ai = bj.

G
G !
A _ , . / 4

G
A " / "

4 A T G A C ',3

Fig. 3. Vertices of the Needleman-Wunsch graph (dots) and the path corresponding to the alignment presented on Fig. 2.

(a)

helix helix

N-end AIaIIGIy 2 Ala S Val a Thrs]Ala 6 AsnTIPro 8 Asp 9 AIa10IGIYIIGIY12

(b)
Ala Gly Ala Val Thr Ala Ann P~o Asp Ala Gly Gly / - - < / - - \

N-end I 2 3 4 5 6 7 8 9 10 11 12

helix

coil

Fig. 4. (A) One of possible arrangements of helices in a polypeptide chain consisting of 12 amino acids. (B) Ver-
t ices of the graph describing ~he secondary structure (helical and coil regions) of a polypeptide chain and the path
corresponding to the above arrangement of the secondary structure. In this example two states are possible for each
unit: co i l a n d helix. @/(coil) ,-~ 0, @/(helix) = .f(ai), where ai is an amino acid at the i-th position in the chain ,
Ui (coil, coil) = Ui (coil, hel ix) = Ui (helix, coil) = 0, while Ui(hel ix , hel ix) = e / / .

2. Genera l i zed m a t r i x apparatus . Stat i s t ica l phys ics o f p o l y p e p t i d e s and D N A

The mathematical apparatus of the statistical mechanics of polymers (Birschtein and Ptitsyn, 1966;
Flori, 1969) and, in particular, the theory of helix-coil transitions in polypeptides (Zimm and Bragg, 1959;
Levis et al., 1970) and DNA (Vedenov et al., 1967) is largely based on a matrix formalism first introduced
by Kramers and Wannier (1941) for computation of the one-dimensional h ing model (hing, 1925). The
latter is the simplest chain of spins each of which can have two possible orientations and interacts only
with the nearest neighbors and an external field.

A general algorithm of statistical mechanics of chain molecules can be formulated as follows (Finkel-
stein,1977): Consider a chain consisting of M units. The i-th unit can assume one of states {q/~, . . . , qN,}
that constitute a set {qi}. The energy E(ql,... , qM) o f a chain whose units assume the states ql , --- , qM

is determined by the formula

M M

E(ql,..., qM) = E c~i (qJ) + E Uj (qj_t, qj). (7)
j = l j = 2

Here the terms • describe the internal energy of units and their interaction with an external field, while
the terms U describe the energy of interaction of neighboring units (Fig. 4).

The objective is to find the partition function of the chain

z = exp(-E(q , ,q,,)/kT),
ql qM

where k is the Bolzmann constant and T is the temperature, and, for each unit, the probability that this
unit is in a given state.

There exists an algorithm for computation of the partition function Z without explicit combinatorial
search over all chain conformations (their number is exponentially large!). Denote ¢1(ql) by Ul(ql) and
denote the s u m Ui(qi-1, qi) + t~i(qi) by ~]i(qi-1, qi) (i = 2, . . . , M). Let further

P1 (ql) = exp (- Lrl (ql)/kT);

ri(qi-l,qi) = exp(-(Ji(qi-1, qi)/kT), i = 2 , . . . , M.

Clearly, the statistical weight of one conformation is

M

j = 2

while the partition function of the chain is

M

Z = E " " E P,(ql) H rj(qJ-l'qJ)" (9)
ql qM j = 2

The values rj(qj-1, qj) form a transition malrix Ri of the size Ni-1 x PC/such that

Ri(k,l) t k = r i (q i _ l , q i).

here Nj is the number of possible states of the j - th unit.
In order to find Z for all i = 2 , . . . , M, one introduces in a recurrent manner vectors QM-1, . . . , QI:

QM is a vector of the length NM whose elements equal 1;

O i - l = R i ' O i , i = M ,2 (10)

Clearly, (9) can be represented as

Z = P1 "Q1 (11)

where P1 is a Nl-element vector (Pl(q~), . . . , PN1 (q~l)).
This is the essence of the generalized Kramers-Wannier method. The time of computation by formulas

(10) and (11) is of the order M N 2, where N is the average number of states of a unit.
Using the vectors Q1,. . . , QM, the vector P1 and additional recurrently computed vectors P2,. . . , PM,

where Pi = Pi-1 • Ri, it is possible to find the probability for a unit i (i = 1 , . . . , M) to occupy a state q~:

Wj(q;) = 1 / Z E . . . E E " " E e x p (- E (q l ' ' ' " 'q ; '"" ,qN)/kT)
ql q j - i q j+l qM

= Pj(q;)Qj(q;)/Z. (12)

Example: The problem of DNA hybridization

Consider two single-stranded DNA sequences of lengths N and M and the set of base-pairing energies
{eij }, determined by them, 1 < i < N, M > j > 1.

In the simplest case, when interaction between nucleotides within each strand is ignored, the base-
pairing energy a fragment i l , . . . , it of the first strand and a fragment j l , . . . ,jt of the second one (here
1 _< il < . . . < it < N and M _> j l > . . . > jt > 1 since strands pair in the antiparallel mode, Fig. 5) is

M

Fig. 5. Hybr id iza t ion of two DNA s t rands . Lines cor respond to base-pa i r ing (e.g., i : j) .

t

E (i l , i , ; j l . . . , j t) = Z eik'Jk"
k = l

The search for the most "strong" pairing is similar to the search of the optimal alignment (Section 1).
The main difference is that here we consider computation of the free energy of strand pairing. This value
F = k T • In Z (Z is the partition function of pairing) is the one that can be measured experimentally. It
takes into account not only the best pairing, but other, not so good but very numerous pairings as well.

In order to solve the problem, we introduce Pij as a partition function of pairing of a fragment [1, i] of
the first strand with a fragment [M, j] of the second strand. Assuming that each pairing corresponds to
one term of the sum (that is, neglecting logarithmic terms in the loop entropy (Flori, 1971)), the value
Z = PN,1 can be found from the following recurrent relations."

P0,M+I = Po,j = Pi,M+I = 1,
M

Pid = P i - l , j + ~_, P i - l , k + l e x p (- e i k / k T) .
k : j

The computation time can be reduced at ,-, M times if one introduces P~,j as partition functions of such
pairings of fragments [1, i] with [j, M], that the i-th base of the first strand is necessarily bound to some
k-th base of the second strand, where M > k > j, cf. (Roytberg, 1984). Then

P0,M+I = Po,j = Pi,M + I = 1,

P;,j = P~,M + I = 0

P~,j = P~,j+l + P i - l , j + l e x p (- e i j / k T) ,

Pi,j = Oi -x , j + P~j .

It is also possible to compute the pairing probability of bases / and j of the first and second strands
respectively:

Wij = 1 / Z . P l -1 , j+ l • e x p (- e i j / k T) . O i + l , j - 1 , (13)

where the partition function Qi,j of pairing of fragments [i, N] of the first strand and [1, j] of the second
strand also is found by recurrent formulas

O N + I , O = Q N + I , j = Qi ,o = 1,

Q*N+I,j --- Q~,o = O,

Q~,j = Q~,j-1 + Qi+l , j -1 e x p (- c i j / k T) ,

Qi,i = Qi+l, j + Q*~. (14) I , . 7 •

with Q~,j being a partition function of such a pairing of fragments [i, N] and [1, j] that the i-th base of the
first strand is paired with some k-th base of the second one (j > k > 1).

It is clear that expression (13) corresponds to general formula (12), since Pi-l , j+l e x p (- ¢ i j / k T) is the
total statistical weight of all those pairings of the fragment [1, i] of the first strand with the fragment [j, M]
of the second one, where the nucleotides i and j are paired, while Qi+1,j-1 is the statistical weight of all
pairings of the fragments [i + 1, N] and [1,j - 1] which follow this base-pairing i : j .

3. A ge ne r a l a l g o r i t h m . Acycl ic g r a p h s over semir ings

Comparison of statements and solutions of the problems arising in the search for an optimal path (3) and
the computation of the partition function of a chain molecule (9) demonstrates their close relationship. In
both cases

(i) the set of all possible paths from the initial state(s) into the terminal one is considered, each elementary
transition between states is ascribed a weight, a path weight is determined by the weights of transitions
forming this path, and the object function is determined by the path weights;

(ii) the algorithm is based on the recursion from the terminal states to the initial ones.
The differences are in the determination of the path weight by the weights of the constituent transitions,

and in the definition of the object function by the total set of path weights. In the Bellman problem the
path weight is the sum of transition weights, while the object function is the maximum of path weights.
In the computation of the partition function, the weight of a path (a conformation of a molecule) is the
product of transition weights, while the object function is the sum of path weights.

These problems can be reduced to the computation of the "sum" of path weights in a graph:

P r o b l e m 1 (Aho e t al., 1976; A v d o s h i n et al., 1984). Consider an acyclic directed graph G (Fig. 1)
consisting of a non=empty vertex set {q} and arcs {(q, q')}, such that each vertex belongs to at least one
arc. One of vertices (q0) is initial and no arc enters it. A set 79 of paths consists of non-emt)ty sequences
of arcs (q0, ql), (ql, q,2) , . - - , (qm-1, qm) such that each path starts at the initial vertex q0 and ends at a
vertex that is not exited by any arc. Each arc (q, q') is supplied by a weight r(q, q'). The path weight is
defined as a "product" of weights of arcs forming this path:

Y(P) = Y(qo ,q l , . . . ,qm-1) ---- r(qo, ql) ® . . . ® r(qm-l,qm). (15)

The total weight of a set of paths is defined as a "stun" of the path weights:

+ = @pY(qo,ql , . . . ,qm-l ,qm). (16)

The objective is to compute this total weight.

Here the arc weights r(q, q') are not necessarily numbers, and operations + and + are not necessarily
multiplication and addition. It is required only that the weights belong to a set A that is a semiring with
two composition laws ® and • and the unit (with respect to ®) element e (actually, the left unit suffices).
It means that

(i) the set A is closed with respect to ® and O:

r G r' E A, r Q r ' E A;

(ii) the operation @ is associative and commutative:

(r @ r ') @ r " = r + (r ' @r"),

r ~) r ~ --: r' G r ;

(iii) the operation ® is associative (not necessarily commutative) and A contains a unit element e with
respect to it:

(r ® r ') ® r " = r ® (r ' ® r ") ,

r®e =- r;

(iv) ® is distributive relative to @:

r ® (r ' ¢ r") = r ® r ' ¢ r ® r" ,

(r ' ® r") ® r = r ' ® r ¢ r" ® r;

(the above formulas hold for any r, r ' and r" from A).
If, in particular, @ is the arithmetical multiplication, we get formula (8) for computing of the statisticM

weight of a path, while if @ is the arithmetical addition, we compute the total profit on this path and get (2).
If the sign ~ denotes the arithmetical addition of path weights, we get formula (9) for computation of

the partit ion function Z; if @ denotes max (choice of a maximum element), we compute the maximum
profit and get formula (3).

All properties (1-4) of the operations @ and ® are important. Properties (1-3) are used in the statement
of the problem itself. If, for example, @ is not commutative, formula (16) loses sense. Distributivity allows
one to take into account all paths (the number of which is exponentially large!) in polynomial time. More
details about graphs over semirings see in (Aho et al., 1976; Avdoshin et al., 1984). Note that the presented
statement of the problem is somewhat different from the one considered in (Aho et al., 1976). Since we
consider only acyclic graphs G, we can soften restrictions imposed on the weights r. In particular, it is not
required that the weights are either all positive or all negative.

Problem 1 is solved in a recurrent manner. For each vertex q not exited by any arc (these vertices form
a set {qend}) a cost

Q(q) = e

is ascribed, where e is tile unit e l e n l e n t , r ® e = r for any r (that is, e = 1 if ® is the arithmetical
multiplication, and e = 0 if @ is addition).

Then, going down by the levels, we compute path costs for each vertex q which is exited by arcs:

Q(q) = G(q,q ,)r(q , qt) ® Q(q,),

where the sum is taken over all arcs (q, q') exiting from q. The process terminates when the value (I) =
R(q0) is computed.

~--]~Vge'lq°) conclude this section by stating in terms of semirings some problems from the physics of chain
molecules. In all problems the graph G consists of vertices stratified into levels 0, 1, 2 , . . . , M, where M is
the number of units in a chain. Vertices belonging to a level i correspond to possible states of the i-th unit.
Zero level contains a single vertex qo (beginning of the chain). Arcs connect only the vertices of adjacent
levels. An arc y = (q ~ q') corresponds to a possible combination of a state q of one unit and a state q'
of the adjacent one. The energy of this combination is denoted by c u. Energies e (with or without indices)
are real numbers.

1. Statistical mechanics of a chain at a finite temperature T (see Section 2) - - computation of the partition
function of all chain conformations

A is the set of non-negative real numbers r (statistical weights, where r = exp(-¢/kT));
y has the weight exp(-¢y/kT);
e = l ;

® is the arithmetical multiplication, x;
• is the arithmetical addition, +.

2. Statistical mechanics of a chain at the zero temperature T (Finkelstein and Reva, 1992) - - computation
of the minimum energy and the number of conformations with the minimum energy.

A is the set of objects of the type {n, e} where s is the energy, n is a positive integer (number of paths,
thus k In n equals the chain entropy);

y has the weight {1,cy};
e = {0, 1};
N is defined by

G is defined by

® { . ' , e ' } =

[{n,d, e<e',

t{n',e'},
since when two physical systems are combined, their energies are summed, while the numbers of stated are
multiplied.

3. Search for one structure with the minimum energy (see Section 1) - - the dynamic programming

A is the set of objects of the type {p, c}, where p is a path in a graph, e is the energy;
y has the weight {pu, cu }, where py is a path consisting of a single arc y;
e = {@, 0}, where 0 is a null path;
® is defined by

where Pl * P~ denotes concatenation of the path P2 to the path Pl. The operation ® is not commutative,
since P2 should extend Pl;

is defined by

where

{p , , e l } • {p2, 2} = { p , = n (e l , e 2) } ,

Pl , C1 < e2,

p = -~min(pt,p2), el = e2,
!
[,P2, E1 > e2.

The operation rain(p1, P2) means that graph vertices are indexed at each level so that each path corresponds
to the sequence of indices. For example (Fig. 1), the index (1, 1, 2) of the path q~ ---, q~ --~ q4 2 is smaller
than the index (1,2) of the path q~ --* qa 2, which in turn is smaller than the index (1,3,2) of the path
ql __~ q3 __+ q42.

In algorithm implementations it is sufficient to retain only the first arc of a path going out of each vertex.
The complete optimal path is reconstituted after an additional processing of the graph in the backwards
direction.

10

.4. Search for all structures of the minimum energy (Waterman and Bayers, 1984)

A is the set of objects of the type {P, ~}, where 7) is a set of states of a chain fragment (various paths
between two vertices of the graph) all of which have the same energy e;

e = {0, 0}, where 0 is a zero path;
® is defined by

{ P l , q } ® {7)2,e2} = {7)1 * 7)2,q +c2} ,

where 7)1 * 7)2 denotes the set obtained by all concatenations of paths from 7)1 and 7)2 (exactly in this order);
® is defined by

{7)1 ,e l } e {7)2, g2 } : { 7), min(e,, e2)},

where

7)1, C1 < C2,

T ' = 7)1U7)2, q = ¢ 2 ,

"iO2 gl > g2.

In this problem it is also sufficient to retain for each vertex only a set of outgoing arcs.
Problem 1 is closely related to the following problems:

P r o b l e m 2A. In the conditions of Problem 1, find the total weight of all paths passing each vertex of the
graph G.

P r o b l e m 2B. In the conditions of Problem 1, find the total weight of all paths passing each arc of the
graph G.

These problems are solved as follows:
1. Problem 1 is solved and all total weights Q(q') of paths coming out of a vertex q' are retained.
2. The weights P(q) = r(qo,q')) are ascribed to the vertices of the first level. For higher levels, total

weights P(q) of paths entering a vertex q are computed recursively:

P(q) = ~(q,,,q)P(q") ® r(q", q),

where the sum ~ is taken over all arcs (q", q) entering q. The total weight of paths passing q vertex q is

P(q) ® Q(q),

while the total weight of paths coming through an arc (q', q) is

P(q) ® r(q, q') ® Q(q').

Problem 2A arises in the computation of the unit state probabilities (formulas (12) and (13)), while Problem
2B is related to the search for an optimal path passing a given arc.

4. P r e d i c t i o n o f t h e R N A s e c o n d a r y s t r u c t u r e

Prediction of the RNA secondary structure together with prediction of the protein structure, of the
non-canonical structures in DNA, and comparison of primary structures of biopolymers is one of the most
popular problems of the computational molecular biology.

In this section we consider two algorithms pertaining to this problem: a classical algorithm for prediction
of the lowest energy secondary structure of RNA (Nussinov et al., 1978; Zuker, 1989) and an algorithm for
prediction of the thermodynamically equilibrium structure (McKaskill, 1990).

11

Fig. 6. Secondary s t ruc ture of a single-stranded RNA. In
the left s t ructure (pairings a - b and c - d) , which is allowed
by the considered model, knots are absent . In the right
s t ructure the addit ional pairings A - B and C - D lead
to formation of knots. Such s t ruc tures are forbidden in the
considered model.

4.1. Prediction of the optimal RNA secondary structure. One more variant of the dynamic programming

Currently many formal statements of the search for the optimal (that is, having the minimum energy)
RNA structure are known. These statements differ in the choice of energy constants, accounting for loops,
and the possibility of search for suboptimal structures. We consider only the simplest form of this problem
(Zuker, 1989). This statement allows us, however, to illustrate the arising algorithmic problems.

We represent a RNA primary structure as a sequence of symbols b l , . . • , bg in the alphabet {A, C, G, U}.
The secondary structure is formed by hydrogen bonds (pairing) between some bases of a single-stranded
RNA. Each base can participate in at most one pairing.

It is assumed that knots are forbidden: if the i-th base is paired with the j - th one (/ < j), then the
intermediate bases cannot pair with bases that lie outside the fragment [i, j] (Fig. 6). This assumption is
mainly algorithmic. It is not strictly motivated physically or biologically. In applications, prediction is often
performed in two steps: first, unknotted structures are found, and then additional knot-forming pairings
are considered.

We assume that each pairing is ascribed an energy dependent only on the paired bases. The total
structure energy is the sum of the base-pairing energies.

Formally, a secondary structure of a sequence P = Pl,--- , PN is a set of pairs S = {(il, j l) , . -. , (it, Jr)}
such that

(i) l < i k < j k < g (k = l, ..., t);
(ii) if (i , j) E S and (i ' , j ') E S, then either i' < i < j < j ' , or i < i' < j ' < j .
Energy of a structure S is

E(S) = ~ ¢(ik,jk), (17)
k

where the energies of base-pairing E(i~,jk) are assumed to be known. Given a sequence B, the objective is
to find the secondary structure having the minimum energy possible for this sequence.

The problem is solved by a recursion. Let B(i, j) be a fragment of B from the i-th to the j - th symbol
inclusively (in particular, B(1, N) = B), and let E(i , j) be the minimum energy of secondary structures
formed by this fragment.

Energies of single-element fragments (i, i) are assumed to be zero, i.e. E(i, i) =_ O. Energies of fragments
of the zero length E(i + 1, i) also equal 0 (they do not participate in the chain energy).

The main recursive relation is

E(i , j) = min{E(i + 1,j), min {E(i+ 1,k - 1) + E(k + 1,j) +c (i ,k)}} . (18)
iqk<j

The first alternative corresponds to the situation when the i-th base (the first base of the fragment
B(i , j)) is not paired, while in the second case the i-th base is paired with the k-th one, where i < k < j .
In the last case the condition of non-knotting allows one to reduce the search for the optimal structure of
B(i , j) to independent search for optimal structures of B(i + 1, k - 1) and B(k + 1,j) (Fig. 7).

Search for the optimal structure on B reduces to the sequential search for optimal structures for all
fragments of B. Energies of all fragments of length 0 and 1 equal 0. Then, using recursion (18), one finds
the optimal structures for fragments of lengths 2, 3, 4, etc. until the entire B is processed.

12

Fig. 7. The structure B(i,j) contains pairings (i : k). In
this case its energy equals to the sum of the pairing energy
e(i, k) and energies of the boxed fragments.

For each segment B(i, j) we retain the value E(i, j) and, retaining k, we remeember the term dominating
in E(i, j) (if E(i, j) is dominated by the term E(i + 1, j), we assume k = i). This allows us to reconstitute
by the back search the pairings forming the optimal structure, once the value E(1, N) has been found.

Computation of each energy E(i, j) by recursion (18) requires a time proportional to IJ - i], while the
entire problem, that is the computation of all E(i, j), requires the ,-, N 3 time.

4.2. Statistical physics of RNA

The recurrent formulas of the above section are analogous to the formulas of Section 1 used in the
construction of the optimal alignment. The partition function for RNA secondary structures is computed
by the formulas analogous to (18) (McCaskill, 1990) with the similar substitution of the minimization for
the addition of energies of different chain conformations, and of the addition of pairing energies for the
multiplication of their exponents.

Let Qi,j be the partition function of a fragment [i, j]. Then

Qi,j = Qi+l,j + E Q i + l , k + l - e x p (- ¢ i k / k T) - Q k + l , j
i<k~_j

(here Qi,i = Qi, i - t = 1). Computation of the objective value Z = Q1,N is performed by induction over a
length increase of a fragment [i, j].

Back recurrence allows one to determine the probabilities of all base-pairs in the thermodynamically
equilibrium state of RNA:

W i , j : 1/Z • Q i - I , j + I • e x p (- ¢ i j / k T) • Q i + I , j - I ,

where Pi,j is the partition function of interaction of a fragment [1, i] with a fragment [j, N] (1 _< i < j _< N).
Pi,j are computed recurrently by decrease of the distance between i and j (eft (13) and (14) in Section 2):

PO,N -~ P1,N+I = Ol,1 = Q0,0 = 1,

Pi,j = Pi-l,j + E Pi-l,k+l " exp(-cik/kT). Qj,k-1
j < k < g

+ E Qk+l,i-x "exp(-eik/kT)" Pk-x,j,
l<k<i

(h e r e l < i < j < N) .

5. D y n a m i c p r o g r a m m i n g on d i r e c t e d h y p e r g r a p h s : Sta tement of the problem

The above algorithm for prediction of RNA secondary structure is traditionally considered to be a
dynamic programming algorithm. However, this algorithm cannot be reduced to the Bellmann scheme or

t=(q, {ql,q 2 qN}) t=(q,{ql,q2}) t=(q, (q2,ql })

ql q2 " " " qN ql q2 ql q2

(a) (b) (c)

t=(q, {ql 'ql})

ql ql

q

(d)

13

Fig. 8. Graph i c r ep r e sen t a t i on of hypera rcs wi th the an initial ver tex q a n d a set of t e rmina l vertices q l , . • • , qN. T h e order
of t e rmina l vert ices is i m p o r t a n t : hypera rcs (B) a n d (C) are different (since the order of t e rmina l vert ices ql and q2 is
different) . A m o n g the t e rmi na l vert ices of a hyperaxc there can be coinciding ones (D).

(a)
t o

(b)

Fig. 9. A s t r e a m on the set of vert ices {q, al, bl, a2, b2). It is

fo rmed by hypera rcs to = (q , { a l , b l }) , tl = (a l , {a2 ,b2})

a n d t2 = (bl , {b2}). Two poss ible r ep re sen ta t ions of this

s t r e a m as a tree are presented . (A) Tree nodes cor respond
to hypera rcs , while vertices of the given D H - g r a p h are
no t shown explicitly. (B) A more e x t e n d e d rep resen ta t ion
which would be p r e d o m i n a n t l y used below: tree nodes cor-
r e spond to vert ices of the given DH-g raph , hype ra rc s (tree
nodes in (A)) are encircled. Note t ha t a ver tex of the
D H - g r a p h can appea r in several different tree nodes (here
it is b2, cf. Fig. 8B).

the summation of paths in a graph described in Section 3: successor of a state (here states are fragments
of the given RNA molecule) is not a single new state, but two states, namely, a pair of fragments obtained
after splitting of the initial fragment by a new pairing.

In order to describe such situations, we introduce the notion of a directed hypergraph (DH-graph). It is a
finite set of vertices (corresponding, as above, to states of subsystems), and a set of hyperarcs connecting
these vertices. A hyperarc t = (q, V) sets in correspondence an initial vertex q and a non-empty set of
terminal vertices V = {q l , . . . } (some of the states qi can coincide, see Fig. 8). The vertices which are not
initial for any arc are called the dead-end vertices.

A stream in a DH-graph is an analog of a path in an ordinary directed graph. These arcs form a path
in a directed graph when the terminal vertex of an arc (q0, ql) coincides with the initial vertex of an arc
(ql, q2). Analogously, if the terminal vertices of a hyperarc to = (q, {q l , . . . , qn}) coincide with the initial
vertices of hyperarcs tl = (ql, {q~,. . . ,qlm 1}), . . . , tn = (qn, {q~,-. . ,q,~,}), all these hyperarcs form a
stream, t0 being the root arc of this stream (Fig. 9).

Like the paths in the models described in Sections 1-3, a stream describes one of the possible states
of a system consisting of subsystems. When the RNA secondary structure is considered (Fig. 10), such
subsystems are the separate chain fragments. They correspond to DH-graph vertices, while hyperarcs of
this graph correspond to the different pairings of the first base of each fragment, or to the absence of any
pairing.

In Section 3 path weight was introduced as a "product" of arc weights and the computation of the "sum"

14

(a)

(ZID

(b)

Fig. 10. One of possible configurations of a 14-unit RNA (A). Circles denote nucleotides. Configuration (A) contains 5
base-pairings: 2 : 13, 3 : 7, 4 : 6, 8 : 11, 9 : 10. A stream (B), corresponding to this configuration contains 6 hyperaxcs
to, h , ts. Vertices of the DH-graph are fragments of the chain. Fragments of a length 2 or more are circled, fragments
of length 1 axe boxed, fragments of length 0 are set in triangles. Fragments of lengths 0 and 1, and only such fragments,
are the dead-end vertices of the DH-graph. The initial vertex of the arc to corresponds to the entire chain 1-14. The first
nucleotide is not paired, and thus to has only one terminal vertex: the fragment 2-14. Other hyperarcs correspond to
base-pairings and have two terminal vertices each. The number at the "fork" of a hyperarc is the number of the nucleotides
paired with the first nucleotide of the corresponding fragment. Thus, the arc tl corresponds to the base-pairing 2 : 13 in
the fragment 2-14. After that two fragments are left, namely, 3-12 and 14-14. The vertex 14-14 is dead-end, since further
pairing in a fragment of length 1 (as well as of length 0, e.g. 10-9) is impossible.

of pa th weights was considered. Similarly, we define stream weights as products of the hyperarc weights
and compute the sum of weights of all s t reams.

We tu rn now to formal definitions.

D e f i n i t i o n 1. An oriented hypergraph (DH-graph) G is a triple (V, q0, E) where V is a non - e mp t y finite
set of vertices, q0 is the initial vertex, E is a finite set of hyperarcs on G.

In order to define formally a s t ream in a DH-graph, we need the not ion of tree (Aho et ah, 1976). Recall,
tha t a tree is a directed acyclic graph in which (a) there is a single vertex (root) with no enter ing arcs, and

(b) for any vertex there exists exactly one path to it from the root.
In order to avoid misunders tand ing , we use below a te rm node for tree vertices. Nodes with no exit ing

arcs are called leaves.

D e f i n i t i o n 2. A s t ream in a DH-graph G = (V, q0, E) is a tree such tha t
(i) each node of the tree corresponds to a vertex q E V, where one vertex can correspond to several

different nodes;

(ii) a set of arcs coming from node a which is not a leave corresponds to a hyperarc t(c 0 E E, so tha t
the ini t ia l vertex of t is the vertex q(a) corresponding to the node a, while the t e rmina l vertices of t are
the vertices corresponding to the nodes into which the arcs from a go.

Examples of s t reams are presented on Fig. 9, 10 and l l .

Now we need only to define the weights of the streams. Let G = (V, q0, E) be a DH-graph and let each
hyperarc t 6 E be ascribed its weight r(t) , which is an element of a semir ing A. The weight R(T) of a
s t ream T is defined in a recurrent manner .

15

(a)

J /

(b)

® @ (9 @
U-(a,{b,c}) V=(b,id,e)) W=(c,Ld,eJ) X=(a,{c}) Y=(a,{d,b~)

r(U)=2 r(V)=5 r(W)=2 r(X)=4 r(Y)=l

t
®

z*(c,{e})

r(Z)--6

(c)

d e d e d e d e e d e e

Y
d b b c b c c c

y1}. ~(2} ~,-~ I ,.~4~ ' ~4~" T
a a a a a

(+,min):+:6 (+,min):+:9 (+,min):+:13 (+,min):+:6 (+,min):+:lO
(x,+):x:5 (x,+):x:20 (x,+):x:60 (x,+):x:8 (x,+):x:24

/
• V

(+,min):min: 6
(x,+):+: 117

Fig. 11. (A) A DH-graph with 5 vertices and 6 hyperarcs. The vertex a is initial, the boxed vertices d and e are terminal.
(B) Hyperares and their weights (real numbers). (C) All full s t reams in the DH-graph. Weights of hyperarcs are circled.
Below each stream its weights relative to two semirings are presented: (x , +): ® and (9 are multiplication and addition of
real numbers respectively, (+,min): (9 and (9 are addition and minimum, respectively. Below the brace the weight of the
entire DH-graph relative to these semirings is given.

D e f i n i t i o n 3.
(i) If a stream T consists of a single node c~ (i.e. if no arcs go from the root of T), then the weight R(T)

is assumed to be equal to the unit e of the semiring A.
(ii) If N > 1 arcs (corresponding to the hyperarc t (a)) go from the root a of a stream T, then

R(T) = r(t((~)) (9 R(T1) ®. . . ® R(TN).

Here T1, . . . ,TN are substreams of the stream T coming out of the terminal vertices of tile hyperarc t(ct);
they are "multiplied" in the order of the terminal vertices of l((~).

D e f i n i t i o n 4. A stream is called termi,al if all its leaves correspond to the dead-line vertices of a DH-graph.
A terminal stream is called full if its root corresponds to the initial vertex q0 of the DH-graph (V, q0, E).

16

Def in i t ion 5. Weight of a DH-graph G = (V, q0, E) whose hyperarcs have the weights from a semiring A
is the sum (in the sense of A) of the weights of all its full streams.

Def in i t ion 6. A DH-graph is called acyclic if it contains no streams in which the vertex corresponding to
the stream root corresponds also to some other node of it.

Clearly a finite acyclic DH-graph contains only a finite number of streams.
Now we can formulate the problem of "dynamic programming" on DH-graphs.

P r o b l e m 3. Consider a finite acyclic DH-graph G = (V, q0, E), each hyperarc t E E of which has a weight
t(e), which is an element of a semiring A. The objective is to find the weight of the DH-graph G.

In particular, the algorithms for computation of RNA secondary structure considered in Section 4 follow
this scheme. In this case (Fig. 10):

(i) vertices of the DH-graph are fragments [i, j];
(ii) hyperarcs are transitions from a fragment [i, j] to the fragment [i + 1, j] and to a pair of fragments

[i, k - 1] and [k + 1, j];
(iii) arc weights are: the energies of pairings ¢ik (with vii - 0) when the minimum energy is com-

puted, the statistical weights rik = exp (-¢ i k / kT) when the partition function is computed, and the pairs
(pairing i : k, elk) when the structure of the minimum energy is searched for (see Problem 3A in Section 4).

(iv) semirings are: (@ is arithmetical addition, ~ is the minimum) when the minimum energy is computed,
and (® is arithmetical multiplication, G is arithmetical addition) when the partition function is computed.
Operations employed in the search for the minimum energy structure(s) are described in Problems 3 and
Section 3.

Solution of Problem 3

Define the weight of a vertex q E V as a sum Q(q) of all terminal streams with the initial vertex q.
Similarly to the algorithm of Section 3, we compute the values Q(q) in the recurrent manner, going from
terminal vertices to the initial ones.

If q is a dead-end vertex, that is, if it has no exiting hyperarcs, then Q(q) = e (that is the unit of the
semiring A).

Let now q be a non-terminal vertex, and let tl = (q, {q~,... ,qlN1}),. . . , ts = (q, {q~,.. . ,q~,}) be all
hyperarcs coming out of q. Then

i Q(q) = ®t,r(ti) ® Q(q~) ® .. @ Q(qN,), (19)

where the sum is taken over all hyperarcs t l , . . . , ts, R(q~) is the weight of the vertex entered by the j - th
end of the i-th hyperarc.

In order to prove formula (19), consider an arbitrary hyperarc t = (q, {qx, . . . , qN}). Denote by pt the
sum (in the sense of the semiring A) of weights of all trees whose roots correspond to the hyperarc t. Let
{T], Tj2,... } be all terminal streams with the initial state qj. Then

Clearly,

Q(q) = Otp,. (20)

 (qj) =

where ij spans all terminal streams with the initial state qj. On the other hand,

17

p, = e . . . e

= , . (t) ® ® . . . ® (¢ , , R

= r(t) ® Q(ql) ® " " ® Q(qN). (21)

Equations (20) and (21) prove equation (19), which provides the desired recurrent algorithm. Clearly its
working time is proportional to the total number of terminal vertices in all hyperarcs of the DH-graph G.

Similarly to Problems 2A and 2B, one can state the following problems:

P r o b l e m 4A. In the conditions of Problem 3 find the total weight of all streams passing each vertex of
the DH-graph G.

P r o b l e m 4B. In the conditions of Problem 3 find the total weight of all streams passing each hyperarc of
the DH-graph G.

Here a sentence "a stream passes a vertex q" means that one of its nodes corresponds to the vertex q,
while a sentence "a stream passes a hyperarc t" means that t corresponds to the arcs exiting from some
node of the stream.

Unlike Problems 2A and 2B, these problems can be solved effectively only with additional restrictions.

D e f i n i t i o n 7. A DH-graph is called strongly acyclic if it does not contain any stream T such that two of
its nodes correspond to one and the same vertex q.

Note that the acyclicity condition forbids only the second use of the vertex corresponding to the root of
the stream, while two branches can include the same vertex.

Algorithms analogous to algorithms of Section 3 solve Problems 4A and 4B if
(i) the DH-graph is strongly acyclic;
(ii) the multiplication ® is commutative.
In order to describe these algorithms, we introduce some new notions. Let q be a vertex of G. A stream

T in G is called q-stream if one of its leaves corresponds to the vertex q, while all other leaves correspond
to dead-end vertices. The sum of weights of all q-streams is denoted by P(q).

From conditions (1) and (2) it follows that the sum of weights of all paths passing a vertex q equals

P(q). R(q),

while the sum of weights of all paths passing an arc t = (q, {q l , . . . , qn}) equals

P(q) . r(t) . ®~=lR(qj).

The values P(q) are computed in the recurrent manner, moving from the vertex q0 to vertices of higher
levels (here the level of a vertex is the maximum path length from the root of a full s tream to the node
marked by the vertex q). The recursion looks as follows. Let t l , . . . ,ts be all hyperarcs for which q is a
terminal vertex, and for an arbitrary j = 1 , . . . ,s let qj be the initial vertex o f t j , and {q~} be the set of
terminal vertices (one of them is the vertex q). Then

P(q) = @j r(tj). P(qj). ®q~.Tlq R(q~.).

Conclusion

The model of streams in DH-graphs allows us to describe all known algorithms that are usually considered
to be "based on the dynamic programming method". This model is applicable in computation of all

18

structures that can be described as a set of bonds each of which divides a structure into several independent
parts. If the condition of "independence of parts" is not satisfied (e.g. when knotted structures occur in
RNA), it is useful to solve a simplified problem with a forcefully introduced independence condition, and
then to solve the general problem using search algorithms.

The formulation of the problems in terms of semirings allowed us, given an algorithm searching for the
energy minimum, to construct a dual algorithm of the computation of the partition function of the same
system (Sections 4.1, 4.2 and 6), and vice versa. This analogy seems to be rather promising.

On the other hand, there is an important difference between the analysis of oriented hypergraphs and
ordinary oriented graphs: DH-graphs are in general irreversible, i.e. hyperarcs, unlike ordinary arcs, cannot
be reversed. Backtracking in Problems 4A and 4B, unlike Problems 2A and 2B, is possible only in specific
cases. Problem 3, that is solved by algorithms not requiring backtracking, can be solved in the general
case, similarly to Problem 1.

Finally, we note the existence of a large class of problems not satisfying the described scheme, but closely
related to it. These are the problems where the operations ® (computation of path (stream) weights by
the (hyper)arc weights), and ~ (computation of the object function by the path (stream) weights) do not
satisfy the semiring axioms (Section 3), in particular, the distributivity condition (Lengauer and Theune,
1991). Such a "non-distributive" problem arises, for instance, in the problem of prediction of the exon-
intron structure in higher eukaryote genomes (Gelfand and Roytberg, this volume). In the cited papers
some approaches to the non-distributive problems on graphs are suggested. It would be interesting to
extend these approaches to the analysis of streams in oriented hypergraphs.

Acknowledgement s

We are grateful to the anonymous referee for critique and suggestions (in particular, the term oriented
hypergraph). M.R. was partially supported by a grant from the Human Genome Council of the Russian
Academy of Sciences.

References

Aho, A., Hopcroft, J. and Ullman, J., 1976, The Design and Analysis of Computer Algorithms (Addison-
Wesley, Reading, MA).

Angel, E. and Bellman, R., 1972, Dynamic programing of a partial differential equation (Academic Press,
New York, London). (Mir, Moscow) (Russian translation)

Avdoshin, S.M., Belov, V.V. and Maslov, V.P., 1984, Mathematical Aspects of Software Synthesis (VINITI,
Moscow) (in Russian).

Birschtein, T.M. and Ptitsyn, O.B., 1966, Conformation of Macromolecules (Interscience, New York).

Dreyfus, S., 1961, Dynamic programming, in: Progress in Operations Reserch, vol. 1 (New York, London).

Finkelstein, A.V., 1977, Theory of protein molecule self-organization. III. A calculating method for the
probabilities of the secondary structure formation in an unfolded protein chain. Biopolymers 16,525-529.

Finkelstein, A.V. and Reva, B.A., 1992, Search for stable state of a short chain in molecular field. Protein
Engineering 5 (no. 6).

19

Flori, P., 1969, Statistical Mechanics of Chain Molecules (Interscience, New York, London).

Gelfand, M.S. and Roytberg, M.A., A dynamic programming algorithm for prediction of the exon-intron
structure. This volume.

Hirshberg, D.S., 1975, A linear space algorithm for computing maximal common subsequences. Commun.
ACM 18,341-343.

Izing, E., 1925, Beitrag zut Theorie des Ferromagnetizmus. Zeitschr. Phys. 31,253-258.

Kramers, H.A. and Wannier, G.H., 1941, Statistics of the one-dimensional ferromagnet. Phys. Rev. 60,
252-276.

Lengauer, T. and Theune, D., 1991, Unstructured path problems and the making of semirings. Proc.
WADS'91.

Lewis, P.N., Go, N., Go, M., Kotelchuk, D. and Sheraga, tt.A., 1970, Helix probability profiles of denatured
proteins and their correlation with the native structures. Proc. Natl. Acad. Sci. 65,810-815.

McCaskill, J.S., 1990, The equilibrium partition function and base pair binding probabilities for secondary
structure. Biopolymers 26, 1105-1119.

Miller, W. and Myers, E., 1988, Sequence comparison with concave weighting functions. Bull. Math. Biol.
50, 97-120.

Myers, E.W., 1989, An O(ND) difference algorithm and its variations. Algorithmica 1,251-266.

Needleman, S.B. and Wunsch, C.D., 1970, A general method applicable to the search for similarities in
amino acid sequence of two proteins. J. Mol. Biol. 148,443-453.

Nussinov, R., Pieczenik, G., Griggs, J.R. and Kleitman, D.J., 1978, Algorithms for loop matchings. SIAM
J. Appl. Math. 35, 68.

RomanovskiW.I., 1972, Algorithms of Solution of Extremal Problems, Ch. 6. Dynamic Programming
Models (Nauka, Moscow) (in Russian).

Roytberg, M.A. 1984, An algorithm of finding homologies among primary Structures (Pushchino) (in
Russian).

Roytberg, M.A., 1992, A search for common patterns in many sequences. Comput. Appl. Biosci. 8, 57-64.

Sellers, P.H., 1974, On the theory and computation of evolutionary distance. SIAM J. Appl. Math. 26,
787-793.

Vedenov, A.A., Dykhne, A.M., Frank-Kamenetsky, A.D., Frank-Kamenetsky, M.D., 1967, To the theory
of the transition helix-coil in DNA. Mol. Biol. (USSR) 1,313-318.

Waterman, M.S. and Byers, W.A., 1984, Determining all optimal and near-optimal solutions when solving
shortest path problems by dynamic programming. Oper. Res. 32, 1381.

Waterman, M.S. (ed.), 1989, Mathematical Methods for DNA Sequences (CRC Press, Boca Raton, FL).

Zimm B.H. and Bragg, J.R., 1959, Theory of the phase transition between helix and random coil in
polypeptide chains. J. Chem. Phys. 31,526-535.

Zuker, M., 1989, The use of dynamic programming algorithms in RNA secondary structure prediction,
in: Mathematical Methods for DNA Sequences, M.S. Waterman (ed.) (CRC Press, Boca Raton, FL) pp.
159-184.

