NESTED ARC-ANNOTATED SEQUENCES AND STRONG FRAGMENTS

Furletova E. ${ }^{1}$, Roytberg M. ${ }^{1}$, Starikovskaya T. ${ }^{2}$
${ }^{1}$ Institute of Mathematical Problems of Biology, Pushchino, Moscow Region, Russia
${ }^{2}$ Lomonosov Moscow State University, Moscow, Russia
*Corresponding author: e-mail: mroytberg@impb.psn.ru
Motivation and Aim: The nested arc-annotated sequences (NAAS) represent RNA secondary structures. Informally, a NAAS is a word in the alphabet $\{A, U, G, C\}$ and a set of nested arcs connecting its letters. An optimal structure for a given word is a NAAS on the word having maximal possible number of arcs among the NAASs. A word is strong, if any of its optimal structures has an arc between the first and the last characters of the fragment. The runtime bound of a dynamic programming algorithm finding an optimal structure for a given word w can be improved by replacement of the number of all fragments of a word $\mathrm{w}\left(\sim \mathrm{n}^{2}\right.$, where n $=n(w)$ is a length of the word w) by the number $F(w)$ of strong fragments of the word $w[1]$. In [1] the authors claim that the average value $\mathrm{F}(\mathrm{w})$ is linear if we will consider only sequences meeting some physical restrictions. Our aim was to study the behavior of $F(n)$ where $F(n)$ is an average number of strong fragments of a random word w of length n (all letters of w are iid variables).

Methods and Algorithms: We have proved the following statement. Let $G(n)$ be a number of strong words of length $\mathrm{n} ; \mathrm{g}(n)=G(n) / 4^{n}$. Then for all $n \geq 0$

$$
\begin{equation*}
F(n+1)=n * g(2)+(n-1) * g(3)+\ldots 1 * g(n+1) \tag{1}
\end{equation*}
$$

In order to understand the behavior of $F(n)$ we will study $g(n)$. If $g(n) \geq c>0$ for all n, then the function $F(n)$ is quadratic.

Experiments and results: To investigate the average number of strong fragments of a random word we have performed Monte-Carlo computer experiments. For each $n \in\{1, \ldots$, $1000\}$ we have created a set $\mathrm{R}[\mathrm{n}]$ consisting of 10000 random sequences of length n . Besides this, we have calculated the experimental values of $F(n)$ and $g(n)$ over the set. The experiments show that $g(n) \approx 0.02$ for all $n \geq 30$. Using (1) and information about $g(n)$ we have approximated $F(n)$ by the formula $F^{*}(n)=0.01 n^{2}+0.64 n-3(\mathrm{n}>30)$. For all $n>30$ we have $F(n)>F^{*}(n)$ and the difference $F(n)-F^{*}(n)$ grows monotonically for $n>100$.

Conclusion: Formula (1) and computer experiments show that the average number $F(n)$ of strong segments of a random sequence of length n growth $\sim \mathrm{n}^{2}$.

References:

1. Wexler Y., Zilberstein C., Ziv-Ukelson M. A Study of Accessible Motifs and RNA Folding Complexity. Proceedings of RECOMB 2006: 473-487.
