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Abstract: Gene recognition is an old and important problem. Statistical and homology-
based methods work relatively well, if one tries to find long exons or full 
genes but are unable to recognize relatively short coding fragments. Genome 
alignments and study of synonymous and non-synonymous substitutions give 
a chance to overcome this drawback. Our aim is to propose a criterion to 
distinguish short coding and non-coding fragments of genome alignment and 
to create an algorithm to locate aligned coding regions. We have developed a 
method to locate aligned exons in a given alignment. First, we scan the 
alignment with a window of a fixed size (~ 40 bp) and assign a score to each 
window position. The score reflects if numbers Ks of synonymous 
substitutions, Ki^ of non-synonymous substitutions, and D of deleted symbols 
look like those for coding regions. Second, we mark the 'qualified exon-like' 
regions, QELRs, i.e., sequences of consecutive high-scoring windows. 
Presumably, each QELR contains one exon. Third, we point out an exon 
within every QELR. All the steps have to be performed twice, for the direct 
and reverse complement chains independently. Finally, we compare the 
predictions for two chains to exclude any possible predictions of 'exon 
shadows' on complementary chain instead of real exons. Tests have shown 
that ~ 93 % of the marked QELRs have intersections with real exons and 
~ 93 % of the aligned annotated exons intersect the marked QELRs. The total 
length of marked QELRs is ~ L30 of the total length of annotated exons. 
About 85 % of the total length of predicted exons belongs to annotated exons. 
The runtime of the algorithm is proportional to the length of a genome 
alignment. 
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1. INTRODUCTION 

Existence of powerful genome alignment methods (Roytberg et al., 2002; 
Brudno et al., 2003;) and availability of many complete genomes, including 
several eukaryotic ones, lead to new formulations of classic problems of 
sequence analysis. Indeed, we can analyze pairwise (or, if possible, multiple) 
sequence alignment instead of one genome sequence. In case of gene 
recognition, the problem of genome alignments allows one to exploit two 
ideas. First, coding regions are, in general, more conservative than the non-
coding ones. Thus, one can try to recognize genes as sequence of well-aligned 
genome fragments (Bafna and Huson, 2000; Batzoglou et al., 2000; 
Novichkov et al., 2001; Taher et al„ 2003). 

Such methods are efficient for relatively distant species, but some genes 
can be unrecognizable because of a low interspecies similarity. From the other 
hand, alignment of close genomes often gives many false positive exons 
because of existence of conservative non-coding regions (Shabalina and 
Kondrashov, 1999). Second, one can additionally pay attention to the 
difference between substitution patterns in coding and non-coding regions; the 
former tend to be synonymous, i.e., preserve a coded residue. 

The methods using alignment-based HMMs or pair HMMs (Meyer and 
Durbin, 2002; Pedersen and Hein, 2003) take into account the differences 
between various parts of a genome alignment implicitly, in course of HMM 
training. Despite the promising results shown by these methods, we think that 
it is worth learning explicitly what benefit one can get from the differences in 
substitution patterns. 

The explicit usage of the differences is implemented by Nekrutenko et al. 
(2001); the abilities of this approach were demonstrated by Nekrutenko et al. 
(2002). However, the goal of the paper by Nekrutenko et al. (2001) was 
mainly to study the ability of the proposed criterion to recognize relatively 
long exons as a whole; authors did not try to recognize the exon borders or 
short coding regions. 

We propose a two-stage procedure combining prediction techniques of 
traditional identification of exons in DNA sequence and methods based on 
information about genome alignment. First, using investigation of 
substitution patterns, we perform an alignment filtration, i.e., locate 'exon-
like regions' (ELR) in the alignment. Then, the putative exon within ELR 
can be found with classic statistical approach. Below, we will demonstrate 
advantages and drawbacks of the approach and will discuss possible ways to 
improve it. 
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2. METHODS AND ALGORITHMS 

General description of the approach. The algorithm works in four steps. 
Three first steps have to be performed independently for the direct and reverse 
complement chains. At the last step, we compare the results obtained for two 
chains and prepare the final prediction. We start (first step) with scanning of 
the alignment with a window of a fixed size w and a given shift s. For each 
considered window, we make a decision if it is exon-like or not. Then 
(second step), we reveal the 'exon-like' regions, ELRs. An ELR is a set of 
consecutive window positions (see details below). Any two ELRs marked on 
a chain do not intersect each other. Presumably, each ELR contains one 
exon. During this step, we work only with exon/non-exon marks of window 
positions, the marks were assigned at previous step. At the third step, we 
reveal a putative exon for each ELR and ascribe the exon with a score. If 
ELR does not contain a pair of aligned exons of high enough score, the ELR 
is to be rejected. Finally, we compare ELRs found on the direct and inverse 
chains. If two ELRs from different chains intersect each other, we keep only 
one of them, the ELR having an exon of higher score. 

Table -L The values ScoreE(KI^, KS) 

Ks ^ 
y"^ 0 1 

y ^ KN 

2 3 4 5 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

2.6 
2.1 
1.7 
1.4 
1.0 
0.6 
0.2 

-0.2 
-0.6 
-1.0 
-1.4 
-1.7 
-2.1 
-2.5 
-2.9 
-3.3 

3.8 
3.4 
3.0 
2.6 
2.2 
1.8 
1.4 
1.0 
0.6 
0.2 

-0.2 
-0.6 
-1.0 
-1.4 
-1.8 
-2.5 

5.1 
4.7 
4.2 
3.8 
3.4 
3.0 
2.3 
1.8 
1.2 
0.7 
0.3 

-0.2 
-0.5 
-0.9 
-1.4 
-2.0 

7.4 
6.7 
6.0 
5.3 
4.6 
3.9 
3.2 
2.7 
1.9 
1.1 
0.8 
0.4 

-0.1 
-0.5 
-1.0 
-1.5 

9.2 
8.2 
7.7 
7.0 
6.2 
5.5 
4.7 
4.0 
3.3 
2.6 
1.8 
1.1 
0.3 

-0.1 
-0.5 
-0.8 

11.0 
10.2 
9.4 
8.6 
7.8 
7.0 
6.2 
5.4 
4.6 
3.8 
3.0 
2.2 
1.4 
0.6 

-0.2 
-1.0 

Here, we set ScoreEiK^ , Ks) = 20 if Ks. > 5, and ScoreEiK^ , Ks)= -20 if Ks. < 5 and KN>\5. 
The values are obtained from the statistics of windows of length 45. 

Analysis of window position. Let w be a size of the window. For a 
window at the position P, i.e., for the fragment of alignment from position P 
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to position P + w - 1, the program calculates its score H{P). The score 
characterizes the presence of stabilizing selection at the protein level. We 
have tested two approaches to define the score //(F), the 'theoretical' 
approach and the 'empiric' one. Within the theoretical approach, the basic 
characteristics of the window at a given position of alignment are (1) 
FMatch—the fraction of match alignment positions, i.e., superposition of 
identical nucleotides and (2) the probability PriKr, Ks, D) to obtain Ks or 
more synonymous substitutions if KT random independent substitutions were 
performed and D codons are deleted. We calculate Pr{KT, Ks, D) for three 
possible frames. The score HT{P) is a negative binary logarithm of the 
minimum of the three probabilities. We say that the window position P is 
'exonic', if both FMatch(P) and the score HjiP) exceed the threshold. 

Within the empiric approach, the score HE is computed based on the 
statistics of the appearance of the windows with the given number of non-
synonymous substitutions Kjsi and synonymous substitutions Ks in coding 
and non-coding regions. Table 1 shows the pre-computed Scores assigned to 
the different pairs (K^, Ks); the values in Table 1 are obtained as log-
likelihood ratios of the corresponding empiric frequencies (only windows 
without deletions were taken into account). Table 1 confirms significant 
difference between the two-dimensional distribution of (K^, Ks) of the 
windows without deletions in coding and non-coding regions. If the window 
at the position P does not contain deletions (D = 0), then we get the value 
HE(P) from the pre-computed table (Table 1); the values in the table are 
obtained as log-likelihood ratios of the corresponding empiric frequencies. 
If D > 0 but the value FMatch exceeds a proper threshold, the value HE(P) is 
computed from the same table, but with recalculated values K^ and Ks, 

Exon-like regions (ELRs), A region is a set of consecutive windows, 
i.e., the windows at positions P, P + ,̂ P + 2^, ..., where 5 is a given shift. A 
region starts in the beginning of the first window and ends at the end of the 
last window. An exon-like region (ELR) is a region meeting the following 
conditions: 
(1) the first window of the region contains a putative acceptor site or START 

codon; the last window of the region contains a putative donor site or 
STOP codon (see below); 

(2) a region is 'exonic-dense', i.e., a difference between the numbers of non-
exonic and exonic windows within a consecutive part of a region cannot 
exceed a threshold InnerCut; 

(3) the number of non-exonic windows at the beginning and at the end of a 
region cannot exceed a threshold EdgeCut; and 

(4) a region is not a part of another fragment meeting conditions (l)-(3). 
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Putative exons and qualified ELRs (QELRs). Our algorithm first finds 
all ELRs in both chains and then reveals among them the 'qualified' ELRs 
(QELRs). The definition of QELR is based on the notion of a putative exon. 

Putative exon is a part of an exon-like region starting with a putative 
acceptor site or START codon and ending with a putative donor site or a 
STOP codon. A putative acceptor (donor) site is aligned, i.e., present in both 
sequences, dinucleotide 'AC (*GT'), its neighborhood has Berg-von Hippel 
score (Berg and Hippel, 1987) exceeding a given cut-off. Putative START-
and STOP-codons also have to be present in both sequences and to be 
aligned. If the exon starts with a START-codon and/or ends with a STOP-
codon, then it should not contain STOP-codons in the corresponding frame. 

We assign each putative exon E with a statistical score S(E) and an 
alignment score A(£). The score S(E) is calculated by the method described 
by Gelfand et al. (1996). The value S(E) depends on the scores of splicing 
sites, codon potential, and exon length. Alignment score A(E) reflects the 
difference between the ratios Ks/n\dix(KM, 1) for the exon calculated for the 
considered chain and the inverse chain. 

We ascribe each exon-like region R with the score G(R) that is a sum of 
the maximal values of S(E) and A(E) for putative exons belonging to the 
region. We say that the ELR R is a qualified ELR (QELR) if R meets the 
following conditions: 
(1) the value G(R) of the region exceeds the cut-off ELRScoreCut and 
(2) the region does not intersect an ELR on the opposite chain or the 

intersecting ELR on the opposite chain has a lower value ELR_Score. 
The result of the algorithm's work is lists of QELR for both chains. The 

exon E corresponding to the maximal score S(E) among all putative exons 
within a QELR R is considered as a predicted exon for the region R, 

Genome alignments. We used two sets of genome alignments. The first 
set is the alignment of syntenic regions of the Homo sapience chromosome 6 
(GenBank ACCESSION NT_007592) and the Mus musculus chromosome 
17 (GenBank ACCESSION NT_002588) of -700 000 nucleotides long. The 
human sequence contains 55 annotated genes and the mouse sequence 
contains 58 annotated genes. 

Alternative splicing variants are given for 17 human genes and for only 1 
mouse gene. Mouse genes contain 567 annotated exons, 476 of them are 
aligned correctly with the corresponding human exons. Incorrect alignment 
of other genes mostly can be explained by inconsistency of exon annotation 
in human and mouse genome. The total length of all the annotated mouse 
exons is 93 162; the average length is 165. The alignment was obtained by 
OWEN program (Ogurtsov et al., 2002). 

The second set is the set of 117 orthologous mouse and human genes 
from Batzoglou et al. (2000). The genes were also aligned with the OWEN 



8 Part 1 

program. The mouse genes contain 476 exons; 397 of them are aligned 
correctly, while the other exons have incorrectly aligned ends. The total 
length of mouse genes is 105 450; the average length is 222. 

The alignment of syntenic regions of the Homo sapience chromosome 6 
and the Mus musculus chromosome 17 was used as the training data for the 
algorithm; the set of Batzoglou et al. (2000) was used as testing sets. 

Finally, we have analyzed the four pairs of orthologous mouse and rat 
mRNA with atypical ratio of the numbers of synonymous and non-
synonymous substitutions; the set was proposed by G. Bazykin. 

Testing parameters. We used the following values of parameters (see 
above): (l)window size w = 45, window offset 5* = 15 bp; (2) FMatch cut-off 
for 'exonic' window FMatchMin = 0.65, H{P) cut-off for 'exonic' window: 
HT_Min = 1.2 (for 'theoretical' score HT), HE^MIH = 3.0 (for 'empiric' score 
HE)\ (3) ELR cut-offs InnerCut = 6, EdgeCut = 6; (4) minimal score of an 
acceptor splicing sites ACC_Score = -17, minimal score of a donor splicing 
sites DON_Score >= -7; and (5) the cutoff for the ELR score G(R) is 2.5. 

3. RESULTS AND DISCUSSION 

3,1 Results 

The algorithm produces two types of objects (see Materials and 
Methods): qualified exon-like regions (QELR) and putative exons. The 
results on QELR prediction are given in Table 2; the results on exon 
prediction in Table 3. All results are given for the mouse chromosome; the 
results for the human chromosome are very similar. Results for training and 
testing sets are in good agreement. For the testing set, we have not reported 
40 QELR predicted on the inverse chain, because we have no information 
about exons on this chain (Batzoglou et al., 2000, also do not consider 
predictions on inverse chain). If we take into account these extra QELR, the 
percent of QELR (line '% Inters QELR') will fall to 87 %. 

The goal of the presented algorithm is to locate the aligned exons, not to 
give their precise borders; we consider the latter problem as a separate task 
and now continue to work on it; the results to be reported later. For example, 
we will propose the method to process correctly the QELRs containing more 
than one exon; this is a common situation for genes with short introns. 

To check the applicability of the method to genes with nonstandard 
relation between K^ and Ks, we have considered four pairs of orthologous 
mouse and rat mRNA (Table 4). 
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Table -2. Qualified exon-like regions (QELR) predicted for the alignment of syntenic regions 
of the Homo sapience chromosome 6 and Mus musculus chromosome 17 (training set) and the 
set of 117 orthologous mouse and human genes from Batzoglou et al., 2000 (testing set) 

Training Testing 

NQELR 
Tot L QELR 
% Tot L Exon 
Ave L QELR 
% Ave L Exon 
N Inters QELR 
% Inters QELR 
Covered Exon % 
N Lost Exon 
% Lost Exon 

Theor. 
441 

116591 
125 
264 
161 
400 

91 
99 
23 
4 

Empiric 
425 

116209 
125 
273 
166 
396 
93 
99 
15 
3 

Theor. 
334 

127827 
121 
339 
153 
324 
97 
98 
43 

9 

Empiric 
310 

144652 
137 
414 
187 
302 
97 
99 
34 
7 

The data are given for both theoretical (columns 'Theor' and empiric versions of the scoring 
function H{P), We use the following notation: 'N QELR', number of revealed QELRs; Tot L 
QELR', total length of revealed QELRs; '% Tot L Exon', ratio of the total length of revealed 
QELRs and the total length of annotated exons; 'Ave L QELR', average length of ELR; '% Ave 
L Exon', ratio of the average length of revealed QELRs and the average length of annotated 
exons; 'N Inters QELR', number of QELRs having intersection with an annotated exon; 
'% Inters QELR', percent of revealed QELRs having intersection with annotated exons; 
'Covered Exon (%)', average part of the exon covered by intersecting QELR; 'N Lost Exon', 
number of 'lost exons', i.e., correctly aligned exons that do not intersect QELRs; and '% Lost 
Exon', percent of the lost exons among all correcdy aligned exons. 

Table -3. Correspondence 

% Lost Exon 
Covered Exon (%) 
Exactly Recogn (%) 

between the predicted putative i 
Training 

Theor. Empiric 
27 31 
87 90 
41 39 

exons and annotated exons 
Testing 

Theor. Empiric 
30 36 
88 88 
43 39 

'% Lost Exon', percent of correctly aligned annotated exons having no intersection with the 
predicted exons; 'Covered Exon (%)', average part of the correctly aligned annotated exon 
covered by intersecting predicted exon; and 'Exactly Recogn (%)', percent of the correctly 
aligned annotated exons that coincide with a predicted exon. 

Table -4. Orthologous mouse and rat genes with nonstandard K^ and Ks ratio 

Mouse GI RatGI KA^ Ks K^/Ks 

6678712 

21312956 

8394248 

6753828 

19705461 

20806163 

9507069 

6978833 

0.10 

0.164 

0.18 

0.19 

0.09 

0.156 

0.17 

0.186 

1.15 

1.05 

1.05 

1.02 

In all pairs, the program detected one QELR that contained the desired 
segment. In two cases (6 678 712 vs. 19 705 461 and 8 394 248 vs. 
9 507 069), the coding region was predicted exactly. For the pair 6 753 828 
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vs. 6 978 833, the correct exon has rank 2 among all putative exons; the 
predicted exon has correct donor site and covers 77 % of the correct coding 
region. In the last case, the predicted QELR coincides with the correct 
coding region, but the predicted exon is significantly shorter. 

3.2 Discussion 

The algorithm addresses two problems. First, it approximately locates the 
area where it is reasonable to look for exons (generation of qualified exon-
like regions, QELRs). Second, it points out the putative exons within 
QELRs. The problem is relatively independent, i.e., we can use arbitrary 
gene recognition algorithm to solve the second problem, when the first 
problem is already solved. We have studied whether the problems can be 
solved based on the difference of the substitution patterns in coding and non-
coding regions. 

Our main efforts were directed to the first problem, and the algorithm 
effectively solves it. Taking into account its linear runtime, the algorithm can 
serve as a useful filtration tool for any exon-recognition algorithm working with 
genome alignments. We have demonstrated that statistics of the possible values 
of pairs {Kj^, Ks) in coding and non-coding regions can serve as the background 
to distinguish between the coding and non-coding fragments. 

Putative exons show up worse correlation with the annotated exons than 
ELRs as well as the predictions made by the programs that use more 
sophisticated training technique (see Introduction). We plan to improve 
significantly this part of our algorithm. For example, we plan to generate for 
a given ELR several putative exons having different frames and link them to 
predict the whole gene. Another possible development of the project is to 
realign genomes in the vicinity of putative exon borders. General genome 
alignment algorithms often misalign conservative positions of splicing sites. 
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