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INTRODUCTION

Many problems of computer analysis of proteins
require pairwise alignments of their amino acid
sequences. The ideal ultimate goal of all alignment
algorithms is to generate a biologically correct align-
ment, reflecting the evolutionary history of homolo-
gous proteins [1]. An aligned position of two proteins
corresponds, in this case, to the same position in the
sequence of their common ancestor. Yet such a biolog-
ically correct alignment is unknown to us. A possible
approximation is an alignment obtained by superim-
posing protein spatial structures, which are conserved
to a far greater extent as compared with primary
sequences [2]. Hence, an alignment resulting from
superimposition of spatial structures was used as a
reference in this work. The quality of an algorithmic
alignment of amino acid sequences (i.e., its similarity
to the reference alignment) is critical when spatial
structures are modeled by homology [3] or identified
on the basis of known structures of other proteins [4],
protein domains are analyzed [5], or the function is
studied for particular regions of a protein [6].

The quality of algorithmic alignments is high only
when the amino acid sequences are sufficiently simi-

lar. It has been found, for instance, that the accuracy
of the alignment by the Smith–Waterman (SW) algo-
rithm is 84% when the protein identity (i.e., the por-
tion of identical positions in two proteins) is not less
than 30%; when the identity is lower, the alignment
accuracy is about 30% [7]. As already mentioned the
reference alignments are obtained by superimposition
of the spatial structures; the alignment quality is the
portion of the reference alignment positions that are
reproduced algorithmically (see Experimental for
more detail). Rapid approximate alignment algo-
rithms, such as BLAST and FASTA, are even less
accurate. The accuracy of BLAST alignments is 26%
with sequences having less than 30% identity and
81% with sequences having more than 30% identity.

Thus, it is of interest to develop methods improv-
ing the reliability of analyses of homologous proteins.
One way for such an improvement is to consider the
physico-chemical properties of a protein, e.g., its sec-
ondary structure. First, the secondary structure (as
part of the spatial structure) is far more conserved as
compared to the primary sequence [8]. Second, effi-
cient methods are available to theoretically predict the
secondary structure. The first methods predicting the
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—The most popular algorithms employed in the pairwise alignment of protein primary structures
(Smith–Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW
algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding
spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment
when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accu-
rate algorithm taking the secondary structure of proteins into account. The alignments generated by this algo-
rithm and having the maximal weight with the secondary structure considered proved to be more accurate than
SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced
positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algo-
rithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary
structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins
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secondary structure were developed in the 1970s and
the early 1980s and utilized only the primary sequence
of the protein under study [9–13]. The accuracy of the
predictions with early methods was limited as only
few spatial structures had been resolved at that time.
With the accumulation of known protein sequences and,
more importantly, spatial structures, the accuracy of the
predictions was significantly improved. Currently, the
best methods (e.g., PSIPRED [14] or Jpred [15]) employ
neuronal networks for predicting secondary structures.
Neuronal networks are trained with the use of known
structures, established experimentally. The general pic-
ture of the current methods predicting the secondary
structure of proteins is available from the EVA server
(http://cubic.bioc.columbia.edu/eva/).

The use of the secondary-structure data for align-
ing amino acid sequences has been considered in the
works of bioinformatics since the mid-1990s. Most
attention has been focused on detecting distant homol-
ogies via sequence alignment, while only fragmentary
data had concerned the quality of algorithmic align-
ments (e.g., see [16]). There are two main approaches
of using the secondary structure for comparing amino
acid sequences (in particular, for determining the spa-
tial folding of a protein chain). One approach consid-
ers the secondary structure by its self. Works have
focused on the algorithmic alignment of secondary
structures [17, 18], a search for secondary-structure
patterns with a subsequent selection of structures with
particular physical properties (compact models, simi-
lar hydrophobicity, etc.) [19], and the construction of
a hidden Markov model (HMM) for protein sequences
on the basis of secondary structures [20, 21]. The
other approach uses both the secondary structure and
the primary sequence [16, 22–28]. Wallqvist et al. [27]
and An and Friesner [28] used a linear combination of
the amino acid component of the alignment weight
and its structural component. To compare the second-
ary structure, a matrix was constructed with the
3D_Ali spatial alignment databank [29] (see Experi-
mental). Method [28] differs from method [27] in that
“improper” structures are excluded during the prelim-
inary selection of the possible homologs and that sec-
ondary-structure elements are classed by size (e.g.,
short helix–long helix).

The objective of this work was to assess the quality
(i.e., accuracy and confidence, see Experimental) of
alignments constructed with the use of secondary-
structure data. We developed and implemented the
STRUSWER algorithm, which utilizes an additional
bonus for the collation of similar secondary struc-
tures. Secondary structures can be determined both
experimentally and theoretically. It should be noted
that, in contrast to our work, previous studies have
been aimed at optimizing the search for homologous
proteins in amino acid sequence databases.

Ideologically, our method is most similar to the
Wallqvist–Fukunishi–Murphy–Fadel–Levy algorithm
(WFMFL) [27]. The major differences are (1) that
WFMFL utilizes a special secondary-structure simi-
larity weight matrix, which is obtained by analyzing
spatial alignments, while STRUSWER uses only one
parameter (bonus for collation of secondary struc-
tures) to take the secondary structure into account, and
(2) that STRUSWER utilizes relative, rather than
absolute, predictions of the secondary structure (i.e.,
the liability to every particular type of structures is
indicated for each residue).

EXPERIMENTAL

 

Secondary structure: Experimental data.

 

 Pro-
tein secondary structures determined experimentally
were extracted from the DSSP database [30], which
utilizes the spatial coordinates of proteins. The eight
types of secondary structures, which are used in
DSSP, were reduced to three commonly accepted
types (H (helix), E (

 

β

 

-strand), and L (loop)) according
to the following scheme: (H, G, I)  H; (E, B) 
E; and (T, S, blank)  L, where H is an 

 

α

 

-helix, G is
the DSSP 3/10 helix, I is the DSSP 

 

π

 

-helix, E is a

 

β

 

-structure element, B is the DSSP single 

 

β

 

-bridge, T
is the DSSP sharp turn, S is the DSSP turn that is not
stabilized by hydrogen bonding, and blank suggests
that the secondary structure has not been determined.

 

Secondary structure: Predictions.

 

 To predict the
secondary structure, the PSIPRED program [14] was
used in two modes, prediction of the structure for a
group of homologous proteins (full version) and pre-
diction of the structure from the amino acid sequence
alone (single version). The prediction accuracy with
our database was 82 and 65%, respectively, which
agrees with the results available from the EVA server
(http://cubic.bioc.columbia.edu/eva/). With each version
we used two representations of the predicted secondary
structure. In one case, structure_type, a particular sec-
ondary-structure symbol (H, helix; E, 

 

β

 

-structure; or L,
loop) was ascribed to every residue of an amino acid
sequence. In the other, structure_probability, the proba-
bility of belonging to one of the three secondary-
structure types was computed for every residue with
the PSIPRED program. The methods used were abbre-
viated as follows: Exp, the structure was established
experimentally and extracted from DSSP; PSI_S, the
structure was predicted by homology (PSIPRED, full
version) and presented in the structure_type form;
PSI_%, the structure was predicted by homology
(PSIPRED, full version) and presented in the
structure_probability form; SIN_S, the structure was
predicted from the amino acid sequence (PSIPRED,
single version) and presented in the structure_type
form; and SIN_%, the structure was predicted from
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the amino acid sequence (PSIPRED, single version)
and presented in the structure_probability form.

 

Reference structure alignments.

 

 As a reference
we used spatial alignments of proteins available from
BAliBASE [31]. BAliBASE contains multiple protein
domain alignments constructed on the basis of spatial
structure alignments and checked by experts. The use
of BAliBASE as a test sample was adequate for our
objective, to improve the quality of aligning homolo-
gous proteins. Experiments were performed with the
first set of alignments (Reference 1) from BAliBASE.
This set was chosen owing to its universal character;
the set includes families of equidistant proteins with a
mean sequence identity of 10–50%. The other sets
were not used, because BAliBASE is intended for test-
ing multiple sequence alignment algorithms and all
sets except Reference 1 include special protein fami-
lies (only short proteins, transmembrane proteins,
highly homologous proteins, etc.; see http://bips.u-
strasbg.fr/fr/Products/Databases/BAliBASE2/). The
set of reference protein pairs included all pairs that
met the following two requirements: a pair of proteins
belongs to one multiple sequence alignment extracted
from BAliBASE Reference 1 and the spatial structure
is known for both proteins. In total, 576 pairs of pro-
teins were obtained. Of these, 368 pairs had less than
30% identity. The resulting reference database was
divided into training and test sets for correct compar-
isons of the methods. The training set included all
even-numbered (in our list) reference pairs, and the
test set, all odd-numbered pairs.

 

Evaluation of the alignment quality.

 

 To compare
two alignments (algorithmic and reference ones) and
to estimate the agreement between them, we used two
parameters, accuracy and confidence.

The alignment accuracy (Acc) was defined as a
ratio of the number of positions (

 

I

 

) aligned similarly
in reference and algorithmic alignments to the number
of aligned positions in the reference alignment (

 

G

 

):
Acc = 

 

I

 

/

 

G

 

.

The alignment confidence (Conf) was defined as a
ratio of the number of positions aligned similarly in
reference and algorithmic alignments to the number of
aligned positions in the algorithmic alignment (

 

A

 

):
Conf = 

 

I

 

/

 

A

 

.

 

An alignment algorithm utilizing the second-
ary-structure data.

 

 Our algorithm is a modification
of the SW algorithm. The only difference is that cor-
relation of the 

 

i

 

-th amino acid residue of one sequence
with the 

 

j

 

-th residue of the other involves computation
of a bonus as the coefficient SBON, which defines the
contribution of the secondary structure, multiplied by

the secondary-structure similarity. The complete
recursive equations are given below:

In these equations 

 

a

 

 and 

 

b

 

 are the first and the second
protein chains under study; 

 

a

 

i

 

 and 

 

b

 

j

 

 are the 

 

i

 

-th and
the 

 

j

 

-th residues in chains 

 

a

 

 and 

 

b

 

; 

 

W

 

(

 

i

 

, 

 

j

 

)

 

 is the weight
of the best alignment of the initial fragment 

 

a

 

[1…

 

i

 

]

 

,
which includes residues 1 – 

 

i

 

 of sequence 

 

a

 

, and the
initial fragment 

 

b

 

[1…

 

j

 

]

 

, which includes residues 1 – 

 

j

 

of sequence 

 

b

 

; 

 

WÄ

 

(

 

i

 

, 

 

j

 

)

 

 is the weight of the best align-
ment of the fragments 

 

a

 

[1…

 

i

 

]

 

 and 

 

b

 

[1…

 

j

 

]

 

, in which
the last residue 

 

i

 

 in 

 

a

 

[1…

 

i

 

]

 

 is not correlated with any
residue of 

 

b

 

[1…

 

j

 

]; 

 

WB

 

(

 

i

 

, 

 

j

 

)

 

 is the weight of the best
alignment of the fragments 

 

a

 

[1…

 

i

 

]

 

 and 

 

b

 

[1…

 

j

 

]

 

, in
which the last residue 

 

j

 

 in 

 

b

 

[1…

 

i

 

]

 

 is not correlated
with any residue of 

 

a

 

[1…

 

j

 

]; 

 

M

 

(

 

a

 

i

 

, 

 

b

 

j

 

)

 

 is the weight of
the correlation of amino acid residues according to the
substitution matrix used (in this work, we used
blosum62 [32]); SBON is the coefficient defining the
contribution of the secondary structure to the align-
ment; and 

 

Q

 

(

 

i

 

, 

 

j

 

)

 

 is the function characterizing the
similarity of the secondary structures of residues 

 

i

 

 and

 

j

 

 in chains 

 

a

 

 and 

 

b

 

. When structure types 

 

T

 

a

 

(

 

i

 

)

 

 and Tb(j)
are ascribed to amino acid residues i and j, then

When structure probabilities Hpa(i), Epa(i), and Lpa(i)
are ascribed to residue i, and Hpb(j), Epb(j), and Lpb(j)
to residue j, then

Q(i, j) = Hpa(i) × Hpb(j) + Epa(i) × Epb(j).

With the given gap penalties, the structural weight of
the alignment differs from the SW weight only in
using weight M(ai, bj) + SBON*Q(i, j) instead of the
weight of correlation according to substitution matrix
M(ai, bj), which is used in the SW algorithm. In place
of SBON*Q(i, j), the WFMFL algorithm utilizes a cor-

W i j,( )

=  max

W i 1– j 1–,( ) M ai bi,( ) SBON Q i j,( )×+ +

W i 1– j,( ) GOP– GEP–
WA i 1– j,( ) GEP–

W i j 1–,( ) GOP– GEP–

WB i j 1–,( ) GEP–
0,⎩

⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

WA i j,( ) max
W i 1– j,( ) GOP– GEP–

WA i 1– j,( ) GEP,–⎩
⎨
⎧

=

WB i j,( ) max
W i j 1–,( ) GOP– GEP–

WB i j 1–,( ) GEP.–⎩
⎨
⎧

=

Q i j,( )
1 if T[ a i( ){ Tb j( )=, 'H ' ]=

or Ta i( ) Tb j( ) 'E '= =[ ] }
0 in other cases.⎩

⎪
⎨
⎪
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=
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relation matrix of secondary-structure elements
(Table 1).

Parameter optimization of the program. Nine
alignments were constructed for each pair of proteins
from the training set and for each set of parameters:

(1) SW alignment (secondary structure disre-
garded);

(2) STRUSWER_SIN_S, which was a
STRUSWER alignment with the secondary structure
predicted using PSIPRRED (single version) with
selection of a major secondary structure;

(3) STRUSWER_SIN_%, which was a
STRUSWER alignment with the secondary structure
predicted using PSIPRRED (single version) and the
secondary-structure probabilities;

(4) WFMFL_SIN, which was a WFMFL alignment
with the secondary structure predicted using
PSIPRRED (single version) with selection of a major
secondary structure;

(5) STRUSWER_PSI_S, which was a
STRUSWER alignment with the secondary structure
predicted using PSIPRRED (full version, see Experi-
mental) with the selection of a major secondary struc-
ture;

(6) STRUSWER_PSI_%, which was a
STRUSWER alignment with the secondary structure
predicted using PSIPRRED (full version) and second-
ary-structure probabilities;

(7) WFMFL_PSI, which was a WFMFL alignment
with the secondary structure predicted using
PSIPRRED (full version) with a major structure pre-
sentation;

(8) STRUSWER_Exp, which was a STRUSWER
alignment using the secondary structure determined
experimentally; and

(9) WFMFL_Exp, which was a WFMFL alignment
using the secondary structure determined experimen-
tally.

Each of the algorithmic alignments constructed
with these methods was compared with the reference
alignment, using the above definitions of accuracy and
confidence. The results obtained for all protein pairs
of the training set (which included only even-num-
bered protein pairs), the accuracy, and confidence
were averaged over all pairs to yield 〈Acc〉 = 〈I/G〉 and
〈Conf〉 = 〈I/A〉, respectively. The parameters were opti-
mized by trial and error, changing SBON from 1 to 30,
GOP from 4 to 20, and GEP from 1 to 7 with an incre-
ment equal to unity. Thus, the training set was ana-
lyzed 30 · 17 · 7 = 3570 times. Depending on the pur-
pose of the optimization, the parameters ensuring the
highest accuracy or confidence were used to examine
each method with the test set. It should be noted that
all three parameters (SBON, GOP, and GEP) can be

optimized only in the STRUSWER program (meth-
ods (2)–(3), (4)–(5), and (8)). Only GOP and GEP can
be optimized in the other cases, because the WFMFL
algorithm utilizes a fixed matrix for the correlation of
the secondary-structure elements (Table 1) and the
SW algorithm only compares amino acid sequences.

Algorithm testing. Each algorithm was tested
using the test set (only including the odd-numbered
pairs of proteins), with the parameters selected as a
result of optimization. In addition to accuracy and
confidence averaged over the total set, these parame-
ters were computed for low-homologous pairs (iden-
tity < 30%).

RESULTS AND DISCUSSION

We estimated the accuracy and the confidence
(Tables 1, 2), and selected the SBON, GOP, and GEP
values to ensure the highest accuracy (Table 2) or
highest confidence (Table 3). In addition, Table 4
characterizes the accuracy and confidence obtained
for the WFMFL and SW algorithms with their stan-
dard parameters. Data are given for the total test set
and for “twilight area” protein pairs, in which protein
identity is less than 30%. Although optimization was
not performed with a subset of low-homologous pro-
teins, it is advantageous to consider such pairs sepa-
rately in order to evaluate the algorithms as applied to
such cases, which are common in practice. Optimiza-
tion was performed differentially for three variants of
the secondary-structure data: (i) the secondary struc-
ture predicted from the amino acid sequence, (ii) the
secondary structure predicted using data on homolo-
gous proteins, and (iii) the secondary structure estab-
lished experimentally (for more detail, see Experi-
mental).

The best accuracy (Table 2) and confidence (Table 3)
was observed for methods utilizing the secondary
structures established experimentally (iii) and meth-
ods utilizing the secondary structures predicted using
data on homologous proteins (ii). However, this result
is mostly of a technical interest. Since the experimen-
tal secondary structure usually suggests a known spa-
tial structure, it is better to use a program aligning pro-
teins by their spatial structures in such cases. On the
other hand, the tests performed with the secondary
structures determined experimentally showed that the
approximate threshold that can be achieved with the

Table 1.  Weight matrix used for correlation of the second-
ary structure elements in the WFMFL algorithm

H E L

H 2 –15 –4

E –15 4 –4

L –4 –4 2
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Table 2.  Accuracy (Acc) and confidence (Conf) of several alignment algorithms tested with the test set (after their parame-
ters were optimized with respect to confidence with the use of the training set)

Algorithm Bonus GOP GEP Acc Conf Acc,
ID < 30%

Conf,
ID < 30%

SW – 7 1 0.525 0.585 0.353 0.429

(i) Secondary structure predicted from the primary sequence

STRUSWER_SIN_S 2 10 1 0.578 0.622 0.428 0.482
STRUSWER_SIN_% 7 8 2 0.602 0.618 0.461 0.477

WFMFL_SIN Matrix 13 1 0.399 0.488 0.263 0.346

(ii) Secondary structure predicted with data on homologous proteins

STRUSWER_PSI_S 8 9 1 0.659 0.683 0.546 0.573

STRUSWER_PSI_% 17 6 2 0.683 0.695 0.579 0.589
WFMFL_PSI Matrix 16 1 0.631 0.672 0.503 0.560

(iii) Secondary structure established experimentally

STRUSWER_EXP 8 10 1 0.677 0.700 0.577 0.601

WFMFL_EXP Matrix 15 1 0.638 0.698 0.527 0.602

Note: The parameters bonus, GOP, and GEP were selected for each algorithm with a training set to achieve maximal accuracy (Acc). Here
and in Tables 3 and 4, the results are shown for the total test set (288 pairs of proteins) and for the twilight area (182 pairs of proteins
with an identity less than 30%). The algorithms are designated as in Experimental (Secondary structure: Predictions). The matrix
utilized in the WFMFL algorithm is described in Experimental (Alignment algorithm utilizing the secondary structure data). The
accuracy and confidence are given as fractions of unity. For each variant (i–iii) the highest value in a column is in bold.

Table 3.  Accuracy (Acc) and confidence (Conf) of several alignment algorithms tested with the test set (after their parame-
ters were optimized with respect to accuracy with the use of the training set)

Algorithm Bonus GOP GEP Acc Conf Acc,
ID < 30%

Conf,
ID < 30%

SW – 20 6 0.380 0.706 0.189 0.607

(i) Secondary structure predicted from the primary sequence

STRUSWER_SIN_S 1 15 7 0.433 0.707 0.246 0.620
STRUSWER_SIN_% 1 10 6 0.458 0.700 0.262 0.596

WFMFL_SIN Matrix 19 7 0.314 0.646 0.158 0.535

(ii) Secondary structure predicted with data on homologous proteins

STRUSWER_PSI_S 1 17 6 0.468 0.715 0.286 0.630

STRUSWER_PSI_% 1 14 6 0.465 0.717 0.282 0.631
WFMFL_PSI Matrix 12 4 0.606 0.694 0.467 0.596

(iii) Secondary structure established experimentally

STRUSWER_EXP 1 13 6 0.483 0.71 0.303 0.615

WFMFL_EXP Matrix 15 7 0.553 0.748 0.400 0.676

Note: The parameters bonus, GOP, and GEP were selected for each algorithm with the training set to achieve maximal confidence (Conf).

Table 4.  Accuracy and confidence of the WFMFL and SW algorithms with their standard parameters

Algorithm Bonus GOP GEP Acc Conf Acc,
ID < 30%

Conf,
ID < 30%

SW – 7 1 0.525 0.585 0.353 0.429

WFMFL_SIN Matrix 12 2 0.386 0.517 0.234 0.381

WFMFL_PSI Matrix 12 2 0.620 0.664 0.490 0.551

WFMFL_EXP Matrix 12 2 0.632 0.697 0.520 0.603
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given method by using the secondary structure in
addition to the primary sequence. Second, the use of
homologs and their secondary structures, even pre-
dicted ones, to align a pair of proteins contradicts the
idea of pairwise alignment. It seems more proper that
the alignment obtained for two proteins with the use
of homology-based predictions is compared with a
multiple sequence alignment of the corresponding
group of proteins. We intend to study this problem in
the future. Thus, we consider the secondary-structure
prediction from the amino acid sequence to be the
main method. We used the single version of PSIPRED
in this work. Although it is less accurate than the full
version of PSIPRED, this method has several advan-
tages. One is that the single version of PSIPRED does
not involve a homology search. Consequently, the cor-
responding modes of the STRUSWER algorithm
(STRUSWER_SIN_S and STRUSWER_SIN_%) can
be used even when a homology search is unfeasible
for some other reasons. Another advantage is a conse-
quence of the first, as it takes less time to predict the
secondary structure. This circumstance may be crucial
for large-scale computational projects. Alignments
constructed by the STRUSWER_SIN algorithm with
secondary structures predicted from the primary
sequences surpass similar alignments obtained with
the SW or WFMFL_SIN algorithm both in accuracy
(Table 2) and confidence (Table 3). The WFMFL_SIN
algorithm showed the lowest accuracy, even when
compared with the SW algorithm. A possible cause is
that to compare secondary structures the WFMFL
algorithm utilizes a matrix that is based on experimen-
tal data and, consequently, is more sensitive to the
quality of predictions.

The WFMFL_EXP and WFMFL_PSI algorithms
surpassed the SW algorithm in accuracy (the difference
was 0.113 and 0.106, respectively) and were exceeded
by the STRUSWER_EXP and STRUSWER_PSI algo-
rithms. It is of interest that, with the secondary struc-
ture predicted by homology, the accuracy of the align-
ments was comparable or even higher than with the
secondary structure established experimentally. Thus,
the highest accuracy was observed for the
STRUSWER_PSI_% algorithm, which utilizes the
secondary structure presented in terms of probability.
A comparison of the algorithms utilizing the second-
ary-structure states with those utilizing secondary-
structure probabilities showed that the latter had a 2%
higher accuracy. After optimization with respect to
confidence, the WFMFL_EXP algorithm surpassed
the STRUSWER_EXP algorithm, the WFMFL_PSI
algorithm was exceeded by the STRUSWER_PSI_S
and STRUSWER_PSI_% algorithms, and the
WFMFL_SIN_S algorithm was exceeded by the
STRUSWER_SIN_S and STRUSWER_SIN_% algo-
rithms. All relationships remained the same when the
set was restricted to low-homologous proteins. The
relative gain in accuracy and confidence increased

substantially when the secondary-structure data were
used (especially in the case of experimental secondary
structures, although this case is hardly of any applied
interest). The quality of WFMFL and SW alignments
was only slightly lower when the programs were run
with standard parameters (Table 4). However, we opti-
mized their parameters to make the comparisons cor-
rect.

CONCLUSIONS
The use of the secondary structure considerably

improves the quality of amino-acid sequence align-
ments. In the case of related sequences, alignments
having a maximal weight when the secondary struc-
ture is considered are more accurate than alignments
constructed using the SW algorithm. It is equally pos-
sible in this case to use the secondary structure estab-
lished experimentally or predicted theoretically with
the PSIPRED server. Thus, the method is applicable to
proteins with unknown spatial structures. The
STRUSWER algorithm surpasses its close analog
WFMFL in alignment quality, and especially in accu-
racy. Further analysis is necessary to determine how
these advantages can be used to improve the quality of
searching databases.
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