
82
-

An Algorithm for Highly Specific Recognition of 

         Protein-coding Regions

 M. S. Gelfand 1 

 misha@imb.imb.ac.ru

T. V. Astakhova 2    M. A. Roytberg 2 

roytberg@impb.serpukhov.su

1 Institute of Protein Research
, Russian Academy of Sciences, 

             Pushchino, 142292, Russia 

    2 Institute of Mathematical Problems of Biology
, 
            Russian Academy of Sciences, 

             Pushchino, 142292, Russia

Abstract

  Since absolutely reliable recognition of protein-coding regions in eukaryote genomic 
DNA sequences by computational methods is unattainable, most existing algorithms try to 
keep some balance between underprediction and overprediction. However, in experimental 
practice it is often sufficient to have just a few protein-coding segments, but predicted with 
high specificity, that is, with (almost) no overprediction. Such predictions are then used 

for construction of oligonucleotide probes and PCR primers for analysis of cDNA libraries 
or total cellular RNA. 

  Here we present a combinatorial algorithm solving this problem. Unlike other predic-
tion schemes, the algorithm uses only the simplest statistical parameters (codon usage and 

positional nucleotide sequences in splicing sites) and thus can be used for analysis of ob-
scure genomes, when large learning sets are unavailable. The algorithm's structure allows 
one to simply tune it for various experimental settings.

1 Introduction

Recognition of protein-coding regions is one of traditional problems of computational molec-
ular biology. Recently it gained additional importance caused by generation of large amount 
of unannotated DNA sequences by numerous sequencing projects, search for disease genes by 

positional cloning etc. The traditional approach to gene recognition is based on measuring 
statistical differences between protein-coding and non-coding sequences and analysis of sta-
tistical properties of exon-intron boundaries (splicing sites), reviewed in [1]. Currently there
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exist more than a dozen packages and electronic servers for prediction of individual exons or 
complete genes. The recognition quality, defined as the average correlation between predicted 
and actual genes, usually does not exceed 70%  [2], and unless a major breakthrough is made in 
understanding the mechanisms of splicing, there are no reasons to hope that it can be increased. 

  Such predictions can be useful, but in many cases there is no necessity to predict a com-
plete gene, since it will be found experimentally. At the same time, prediction of relatively 
short protein-coding segments can be done with almost 100% reliability. In particular, such 
predictions can be used for synthesis of oligonucleotide probes or PCR primers with subsequent 
screening of cDNA libraries or total cellular RNA. The existing methods are not suitable for 
this task, since they do not allow to reliably determine a desired segment, if it is guaranteed 
only that overprediction on the average is approximately 20%, and in some cases it can be 
much higher. 

  Another problem is the fact that in many cases the methods based on application of neural 
networks or pattern recognition algorithms use a large number of complicated statistical pa-
rameters, and thus require a large learning set consisting of well-characterized sequences. Such 
samples are available if one works with traditional genomes (mammals, nematode Caernorabdi-
tis elegans, Drosophila), but they are absent for many important genomes (many invertebrates, 
plants, fungi, protists). Finally, most algorithms use linear scoring functions, although non-
linear functions provide better recognition [3]. 

  These problems are addressed by an algorithm based on vector dynamic programming [4] 
and computation of partition function of path weights on a graph [5]. At the first step the algo-
rithm constructs a set of exon chains (sub)optimal for some simple scoring function. The second 
step is based on the following observation: segments occurring in the majority of suboptimal 
genes are truly coding. Thus segment weights are recomputed using the partition function, 
and a small number of highest scoring segments is produced as the output, with the guarantee 
that some fixed number (usually one or two) of segments is truly coding. It should be noted 
that this formulation of the protein-coding recognition problem is stated here for the first time, 
although some existing algorithms can be re-shaped for such predictions. 

  This algorithm was implemented as a module in the GREAT package and tested on 50 long 
(10-30 thousand nucleotides) human DNA sequences. The first predicted segment was coding 
in 96% cases, the first two segments contained a coding one in all cases. To have two coding 
segments at a distance not less than a given one, it was sufficient to retain three segments in 
86% cases and five segments in all cases but one. These results are comparable with the results 
by GRAIL [6], a neural network using many complicated statistical parameters.

2 Algorithm

Let S be a set of candidate genes (exon chains), and let Sb C S be a subset of genes containing 
nucleotide b. Each gene p E S is assigned a statistics-based weight R(p) (see below). Score of
nucleotide b is computed as
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where c is a normalizing constant. Score of a segment B =b1... bk is defined as the average 

weight of the constituting nucleotides

Segment is called locally optimal if its weight is greater than the weights of all segments closer to 

it than by some fixed distance. The set of locally optimal segments is output as the prediction. 

  Note that these definitions do not depend on the choice of the gene weights R. If R is 

additive, S can be the set of all genes on the given sequence, and then nucleotide weights can 

be computed by the dynamic programming algorithm for computation of the partition function 

[5]. If R is not additive, U cannot be computed effectively, and the set S should be reduced. 

Here we use the Pareto set P of genes, guaranteed to contain the optimal gene for any weight 

function satisfying some natural conditions. 

  More exactly, let each candidate gene be described by a set of additive parameters W1i ... , Wm. 

We say that a gene p dominates over a gene r (denoted p ~ r) if W; (p) •† W; (r) for all 

j = 1,... , m and at least one inequality is strict. The Pareto-optimal set P contains all genes 

such that

• for any gene r tt P there exists a dominating gene p •¸ P: p >- r; 

• any two genes pi, p2 E P are incomparable: neither pi >- p2, nor p2 >- pi •

The Pareto set can be constructed by the vector dynamic programming algorithm described 
in [4], [3]. It is simple to demonstrate [4] that for any function R(W1, ... , Wm) monotonically 
increasing on its variables the Pareto-optimal set P contains an optimal gene, and that it does 
not contain "unnecessary" genes, that is, for any gene p E P there exists a function R, for 
which it is optimal. 

  Thus, to compute nucleotide weights U we use only genes from the Pareto-optimal set. We 
use the following gene parameters: length L (in codons), number of exons N, coding potential 
C, total weights of donor and acceptor sites D and A respectively. 

  The coding potential was defined as follows. Let f (abc) be the frequency of the codon abc 
in the learning set. Codon weight is defined as

where fm. and fmin are the frequencies of the most frequent (resp. most rare) codons in the 
learning set. The coding potential of a gene a1 b1 c1 ... aLbLcL consisting of L codons is defined 
as

We will need also the average weight of codons in the learning set pc and the standard deviation

σC.

To define site weights, consider learning sets of splicing sites aligned by the exon-intron 
boundaries (donor and acceptor sites are considered separately). Let n(b, i) be the frequency
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of codon b in alignment position i, and let n*(i) be the frequency of the consensus nucleotide, 
so that  n  *  (i) = maxb n(b, 0. Weight of a site b1... bK is defined as

For a gene consisting of N exons D is the total weight of its N-1 donor sites
, A is the total 

weight of N-1 acceptor sites. The average weight of donor (acceptor) sites in the learning set 

is denoted by ƒÊD (resp. ƒÊA), the standard deviations are denoted by ƒÐD and ƒÐA respectively . 

  Finally, the gene weight is computed as

3 Testing 

3.1 Implementation

The algorithm has been implemented as a module in the GREAT package and is available from 
the authors by e-mail. 

3.2 Test set 

The test set consisted of 50 human sequences of length 10-30 thousands of nucleotides, each 
containing not more than one gene. All sequences from GenBank (as of Spring 1996) satisfying 
these conditions were considered. Alternatively spliced, incomplete,single exon genes and genes 
with abnormal splicing sites were not excluded. 

3.3 Parameters and procedures 

The parameters (codon frequencies and positional nucleotide frequencies in splicing sites) were 
taken from [3]. Each sequence was divided into overlapping fragments of length 4 thousand 
nucleotides. After prediction of coding segments (independently for each sequence fragment), 
the fragments were ordered by decrease of max R and fragments with max R lower that some 
fixed threshold were deleted. Segments of length 30 nucleotides at the minimum distance 70 
nucleotides were predicted. We retained the best and second best segments for each fragment 
in the obtained order. Partially coding segments were considered as false predictions. 

3.4 Benchmarking 

The algorithm was compared with the GRAIL e-mail server [6] in the following way. The 
same sequences were submitted to GRAIL II. The predicted exons were ordered by decrease 
of scores, and the best segments were taken from the best (highest scoring) exon, the second  b
est exon, an so on. Since GRAIL produces many ties, results were summarized in two ways. 

The optimistic estimate resolved all ties in favor of GRAIL (that is, if a true exon and a falsely 
predicted exon had the same scores, the true exon was assigned higher rank), the pessimistic 
estimate resolved all ties against GRAIL.
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(a) GREAT

(b) GRAIL - optimistic resolution of ties

(c) GRAIL - pessimistic resolution of ties

Figure 1: Prediction results. The values in the cells show the number of candidate segments 
that should be considered in order to have the given number of coding segments (1 or 2).

3.5 Results

The overall results of testing are given in the table. If only one coding segment was needed, 

in 47 cases out of 50 the highest scoring segment was  sufficient; the two best segments were 

sufficient in all cases. To have two coding segments, one had to consider 3 candidate segments 

in 43 cases, and 5 segments in 49 cases. 

  GRAIL results were slightly better than ours for the optimistic resolution of ties, and much 

worse for the pessimistic resolution. Thus the GREAT performance was at least comparable 

to that of GRAIL.

4 Discussion

The results of demonstrate that the algorithm reliably (with high specificity) finds coding 
segments in human DNA. With the probability close to 100% the output contains a given 
number of coding segments among very few candidates. It should be noted that the testing 
was deliberately performed in hard conditions, since we considered long sequences and did not 
exclude numerous anomalies. 

  Simplicity of the statistical base of the algorithm allows one to use it for analysis of less 
studied genomes when large learning sets are unavailable. Preliminary results demonstrate that 
the quality of recognition of Drosophila genes is the same as for human genes. Currently we 
are performing testing on plant and protist genes.
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  At the same time, combinatorial flexibility of the algorithm makes it possible to specifi-
cally tune it for various experimental designs. In particular, similar ideas can be applied for 
high sensitivity recognition, when loss of exons is less acceptable than overprediction (work in 

 preparation).
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