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I. Introduction.

We study the schemata, their elements being automata. The define
ition of scheme of automata is given in [@?. In our work an automate
means an initial Healy automate.

I.I. Simple schemata. Every scheme of automata with r feedbacks

may be represented in a form of so called gimple scheme (see pict-
ure),
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An automate F will be refered to as a basic automate of a simple

schene, automata.XI,..,xr - as feedback automata.

For convenience we'll consider only such schemata in which all
feedback automata have the same input alphabets and the same oubtput
alphabets.

I.2. GM~automaty. Definition, Let F be an automate with r+I input
and r+I output, inputs and outputs of ¥ sre enumerated from O to r.
An automate F is a generalized Moore automate (Gl-automate) if

output symbols in all oubput channels except zero output channel
depend only on the input symbol in zero chamnnel and on the state of
automate F, I.e. if ¥ - GM-automate with the input alphabet Zo =¥
and the output alphabet T x TT, the set of states § and the output
function Wi Qx (£ x27) = T x 1, then

Vaee¥mpe 2 oxZ7Vie{t,uu,r} (10 = po o> wi(q,7) =¥ (a,p ).

Mark, that the output symbol in zero output channel of Gl-autom-
ate may depend on the input symbole in all input chamnels. p

A number r is refered to as a dimension of a Gl-automate F below.
Dimension of Gli—automate F is denoted dim F.

T.%, S—equivalence of GM-aubomata. It's evident, that if an aut-
omate ¥ is a Gl-automate with the input alphabet Z_  xZ° and the
output alphabet To X Tr, then for any automata KyseesXy, with the in-
put alphabet T and the output alphabet Z , the simple scheme with
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the basic automate F and the feedback automata KpseesXn, is defined
correctly.

An automate given by this scheme we'll denote as S(F,XI,..,XI,).

An input alphabet of S(F,XI,..,Xr) is ¥ , and an output alphabet
is To'

Definition., Two r—dimensional GM-automata F and G are s—equivalent
if for any automata KseesXpy the automata S(F,XI,..,Xr) and S(F,XI,.
.»X,) are equivalent.

Definition., A word v and automata KpseesXp gs~distinguish r-dimen-
sional GM-automate F and G 1f the output words of automata S(F,XI,.
.,xr} and 5(G,x1,..,%,) on the word v are different.

I.4. List of results. We give the algorithm which constructs a
GM=-automate with minimal number of states. This minimal Gli~automate

is unique in some exact sence (Theorems I,2).

Also we give an upper bound of a length of the experiment which
determines s—equivalence of given GM-automata, i.e. a bound for the
length of such word v, that v and some automata Krree X, s~disting-
uish given GM-automata (Theorem 5). This upper bound can't be improv-
ed essentially (Theorem 6).

We generalise the concept of s~equivalence to the case of schem=—
ata with nonequal number of feedbacks and prove theorems analoguus
to above theorems (Theorems 3,4).

A problem of s-equivalence of two Gli-~automata is solvable becouse
of above bounds.

2 The minimization of Gli~-zutomata.

Designation F:(r,Q,A ,qo,‘P ,¥> means Fis the automate with the
input alphabet /7, the set of states Q, the output alphabet A , the
initial state Ay the transition function 5°:Q x /> Q, and the oubt-
put function ¥:Q x /™ A.

2+T¢ The normal form of the Gli-automate., Definition. Let F be a
GM~-automate with the input alphabet > o xZT and the output alphabet
T XT, q is a state of F and 5'052

4 feedback channel i (16(1,..,r}-) is named g, 6 j-essential if
there exist a word v.56' Z and automata XI,..,X Y,z
such that the output words of the automata 3(F,X
”Xr> and S(F,XI,..,Xi_I,Z Lot

Let's fix the letter e T.

Definition. The normal form of the GM-automata F_(‘Z er,Q,TO X
x T,q,, P, ¥» is the GM-automate G= <X xIT,q,T x T ,qo,'\",/u7,
where /u (q,ﬁ“) v ° (q,0 ), and for every 1€i ,..,r}

1-I’ isI?*°

I”” i-I, X X:|.+I"
,..,X ) on the word v are dlfferent
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) yvl(q,s'), if i is q,d ®-essential channel

jxl(q,ﬁ’) =
O 1in opposite case
Evidently, the normal form of any Gli-automate is a GlM-automate,

2.2. Permutations of channels., Definition I. Let F:(Z; xZT,q,

T, x T,q,,P,¥r and X xZ%,q, T x TF,q,A, M7 be the GM-aut-
omata and (iI,..,ir) ig a permutation.

We say that GM-automate G i1s obtained from Gl-automate ¥ by perm-
utation (iI""ir) if for every state g€ Q, lettersg, 61"" 6, €
Zo ST and je {I,..,r} .

>\(Cla 50a 6]::": 6I‘ )
by

}f?(q’ 603 GIa*va 51:. ) ‘P?(q, 607 611’..’5:1 )
/ulJ(Cla GOa 61:": 61, )=\PJ(Qa 60a 6iIa"a 6ir )

r
2, Gli~automata F and G are p-equivalent (p~isomorphic) if F is

equivalent (isomorphic) to some automate which may be obtained from
G by some permutation.

i

‘P(q, 60, 5 5 )

lI,lo, i

i

2.3, The minimization theorem., We!ll say +G is a minimal GM-aut~
omate for Gll-automate F' instead 'G is a GM-automate with smallest

number of states which is equivalent %o F!',

Lemma I. GM-automata F and G are s-—equivalent if and only if
their normal forms are p-equivalent.

Using lemma I we can prove the next theorem.

Theorem I. Let P be a finite GM-automate.

I. The reduced automate which is equivalent to normal form of Gl-
automate F is a minimal GM-automate for F,

2. If G and H are minimal Gl-automata for F, then normgl forms of
G and H are p~equivalent.

Lemma 2, There exist an algorithm which constructs the normal
form of the given Gli-automate.

Theorem 2. There exist an algorithm of constructing minimal GM-
automate for the given finite Gli~automate F.

The last “heorem immediately follows from theorem I and lemma 2
and from ability to construct reduced automate which is equivalent bto
the given finite automate.

3. Bnriched GM-automata

3.I. Maps connected with GM-aubomata. Designation. Let I” and A be
the finite alphz»ets. The set of all automata with input alphabet r
and output alphabet A will be denoted k([ ,4 ).

Every Gil-automate F k( Z xST, T, X ) gives a map Sp3

k(T,S$) Fs k(= ,,T,) which naps ordered set Xy,e«;X, into aut-
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omate S(F’XI""Xr)'

Evidently, GM-automata F and G are s-equivalent if and only if
maps SF and SG are equal.

5.2, Bnriched GM-automata and s-distinguishing of them. A map
Spi < xI,..,x£> —> S(F,XI,..,Xr) may be considered as a function of
only part of variables XyseesXy, treating other variables as paramet-

ers.

Except that we may don't want differ maps connescted with p-equive
alent GM-automata. So we get the next definitvions,

Definition. Enriched GM~-automate (EGM-putomate) is a couple F,f
where F is a GM-automate and f is a partial function from {I,..dimF}
to the set of integers (about designation dimF, see I1.2).

The dimension of EGM-automate ¢F,f» is dimension of GM-autom-
ate F. Let P,f and G,g Dbe EGM-automata, dim <F,f> =r,

dim G,g = d

We'll say that the word v and two sequences of automata XpseeX,
Ypse-,¥y s-distinguish EGM-automata (F,f> and <G,g> if (i) for
all i€ {I,sesr} and je {I.,.,d} if £(i) and g(j) are defined and
£(i) = g(J), then x; is equimalent to y.; (i1) output words of autome
ata S(F,XI,..,Xr) and S(G,YI,..,Yd) on the word v are different.

Definition. EGM-automata <F,f> and ¢<G,g> are named g-disting~
uishable if there exist the word v and the sequences XpseesXy
TyseesTy which s—distinguish ¢F,f> and <G,g» .

A connection between s~distinguishing of GH-automata and EGM-aut-
omata gives the next lemma,

Lemma 3. Let ¥ and G be the GM-automata, dimF = dimG = r, and Er
is an identical function with domain {I,..,r}. The word v and autom=
ata X1seesXy s~distinguish GM-automata F and G if and only if the
word v and the sequences of automata XpseesX, xT,...,er—dis—
tinguish BGM-automata <7, Er> and <G,E e

%e3s The minimization of EGMwautomata., The definitions of normal

form of EGM~aubomate and p—equivalence of EGM-automatz are analogous
to the correspondent definitions for GM-automata and we won't cite
them here.

Definition, EGM~automate <«G,gy is the minimal EGM-aubtomate for
BGM~-automate < F,f» 1if <¢G,z% is the EGM-automate with smallest
number of states and with smallest dimension, which is not s-disting-
uishable from <F,f>.

Theorem 3., Let <F,f> be the r-dimensional EGM-automate and £(i)
is defined for every ie {I,..,r}.

I. There exist am algorithm which constructs the minimal EGM-aut-
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omate for <F,f> .,
2, If <G,gy and <H,h> are the minimal EGM-automata for < F,f>,
then the normal forms of < G,g» and <H,h> are p-equivalent.

4, Length of experiments with schemata

4,1, The main theorems.

Theorem 4, Let < F,f> and < G,g2v Dbe the s-distinguishable EGM-
automata, F and G have no more than n states. Let t be a number of
such integers i that £(i) = g(j) for some J.

There exist the word v and two sequences of automata XpseesX
TpseesTg such that

b b2

(1) v, XpseesX, 5 Frsees¥q e-distinguish <F,f> and <G,g> 4

(ii) a lengbth of v is no more than (t+2)+n.

Next{ theorem 5 is a simple corollary from lemma 3 and theorem 4.

Theorem 5. Let P and G be r—~dimensional non s-equivalent GM-aubom-
ata, F and G have no more than n stabtes,

There exist such word v and automata XpyeesXy that

(i) v and Xpsee X, s-distinguish F and G,

(ii) a length of v is no more than (r+2)en.

4,2, Given upper bounds are asymptobtically exact.

Theorem 6. There exist non s-equivalent GM~-automata F and G such
that

(1) dimP = d4imG = r,

(ii) ¥ and G have no more than n states,

(iii) For any word v and any automata KpyeesX, if the length of v
ig less than (n-r+I)*(r+2) - I, then VyX1yeesX, don't s-distinguish
F and G,
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